Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 17(22): 22642-22655, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37963265

ABSTRACT

Upconversion of near-infrared light into the visible has achieved limited success in applications due to the difficulty of creating solid-state films with high external quantum efficiency (EQE). Recent developments have expanded the range of relevant materials for solid-state triplet-triplet annihilation upconversion through the use of a charge-transfer state sensitization process. Here, we report the single-step solution-processed deposition of a bulk heterojunction upconversion film using organic semiconductors. The use of a bulk heterojunction thin film enables a high contact area between sensitizer and annihilator materials in this interface-triplet-generation mechanism and allows for a facile single-step deposition process. Demonstrations of multiple deposition and patterning methods on glass and flexible substrates show the promise of this materials system for solid-state upconversion applications.

2.
Nano Lett ; 23(15): 6852-6858, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37499230

ABSTRACT

Laser sails propelled by gigawatt-scale ground-based laser arrays have the potential to reach relativistic speeds, traversing the solar system in hours and reaching nearby stars in years. Here, we describe the danger interplanetary dust poses to the survival of a laser sail during its acceleration phase. We show through multiphysics simulations how localized heating from a single optically absorbing dust particle on the sail can initiate a thermal runaway process that rapidly spreads and destroys the entire sail. We explore potential mitigation strategies, including increasing the in-plane thermal conductivity of the sail to reduce the peak temperature at hot spots and isolating the absorptive regions of the sail that can burn away individually.

3.
Biosens Bioelectron ; 79: 1-8, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26686916

ABSTRACT

Photoluminescent carbon nanodots (CNDs) have offered considerable potential to be used in biomedical and environmental fields including live cell imaging and heavy metal ion detection due to their superior quantum emission efficiencies, ability to be functionalized using a variety of chemistries and apparent absence of toxicity. However, to date, synthetic yield of CNDs derived from biomass via hydrothermal carbonization is quite low. We report here the synthesis of nitrogen-doped carbon nanodots (N-doped CNDs) derived from hydrosoluble chitosan via hydrothermal carbonization. The synthetic yield could reach 38.4% which is 2.2-320 times increase compared with that from other biomass reported so far. These N-doped CNDs exhibited a high quantum yield (31.8%) as a consequence of nitrogen incorporation coincident with multiple types of functional groups (C=O, O-H, COOH, and NH2). We further demonstrate applications of N-doped CNDs as probes for live cell multicolor imaging and heavy metal ion detection. The N-doped CNDs offered potential as mercury ion sensors with detection limit of 80nM. A smartphone application (APP) based on N-doped CNDs was developed for the first time providing a portable and low cost detection platform for detection of Hg(2+) and alert of heavy metal ions contamination.


Subject(s)
Biosensing Techniques/instrumentation , Carbon/chemistry , Chitosan/chemistry , Luminescent Agents/chemistry , Mercury/analysis , Nanostructures/chemistry , Smartphone/instrumentation , Cations, Divalent/analysis , Cell Line , Humans , Limit of Detection , Luminescent Agents/chemical synthesis , Models, Molecular , Nitrogen/chemistry , Optical Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...