Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gene Expr Patterns ; 47: 119305, 2023 03.
Article in English | MEDLINE | ID: mdl-36682427

ABSTRACT

Neuronal defect and loss are the main pathological processes of many central nervous system diseases. Cellular reprogramming is a promising method to supplement lost neurons. However, study on cellular reprogramming is still limited and its mechanism remains unclear. Herein, the effect of Neurod1 expression on differentiation of NG2 glia into neurons was investigated. In this study, we successfully isolated NG2 glial cells from mice prior to identification with immunofluorescence. Afterwards, AAV-Neurod1 virus was used to construct Neurod1 overexpression vectors in NG2 glia. Later, we detected neuronal markers expression with immunofluorescence and real time quantitative polymerase-chain reaction (qRT-PCR). Besides, expression of MAPK-signaling-pathway-related proteins were detected by western blotting technique. Through immunofluorescence and qRT-PCR techniques, we observed that Neurod1 overexpression contributed to NG2 cells differentiated into neurons. Further experiments also showed that Neurod1 overexpression induced the activation of MAPK pathway, but PD98059 (a selective inhibitor of MAPK pathway) partly inhibited the neuronal differentiation induced by Neurod1 overexpression. These findings suggest that Neurod1 could promote NG2 glia cells differentiating into neurons, wherein the mechanism under the differentiation is related to activation of MAPK pathway.


Subject(s)
Neuroglia , Neurons , Mice , Animals , Neuroglia/metabolism , Neurons/metabolism , Cell Differentiation , Cellular Reprogramming , Basic Helix-Loop-Helix Transcription Factors/metabolism
2.
Photodiagnosis Photodyn Ther ; 36: 102521, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34481977

ABSTRACT

Colorectal cancer is with high incidence worlwide.. Because of the heterogeneity of the tumor, combination therapy is probably of great significance to improve the prognosis of colorectal cancer patients. Herein, the pH-responsive supramolecular hydrogels mPEG-luteolin-BTZ@ICG based on bortezomib (BTZ) and indocyanine green (ICG) were prepared, and the colorectal cancer was treated with mPEG-luteolin-BTZ@ICG through the combination of photothermal/photodynamic and chemotherapy. BTZ performed drug therapy, meanwhile ICG wrapped in supramolecular hydrogels possessed higher light stability than free ICG to perform photothermal/photodynamic therapy. In vitro and in vivo assays showed excellent inhibition of tumor cells due to the combined effect of BTZ and ICG. The mPEG-luteolin-BTZ@ICG combined with laser therapy possessed exceptional biological safety and provided new candidates for advanced colon cancer therapy and important references for other tumor therapies.


Subject(s)
Colorectal Neoplasms , Hyperthermia, Induced , Nanoparticles , Photochemotherapy , Bortezomib , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Humans , Hydrogels , Hydrogen-Ion Concentration , Indocyanine Green , Photochemotherapy/methods , Photosensitizing Agents , Phototherapy
SELECTION OF CITATIONS
SEARCH DETAIL
...