Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Neuroradiology ; 66(7): 1113-1122, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38587561

ABSTRACT

PURPOSE: To develop and validate a prediction model based on imaging data for the prognosis of mild chronic subdural hematoma undergoing atorvastatin treatment. METHODS: We developed the prediction model utilizing data from patients diagnosed with CSDH between February 2019 and November 2021. Demographic characteristics, medical history, and hematoma characteristics in non-contrast computed tomography (NCCT) were extracted upon admission to the hospital. To reduce data dimensionality, a backward stepwise regression model was implemented to build a prognostic prediction model. We calculated the area under the receiver operating characteristic curve (AUC) of the prognostic prediction model by a tenfold cross-validation procedure. RESULTS: Maximum thickness, volume, mean density, morphology, and kurtosis of the hematoma were identified as the most significant predictors of good hematoma dissolution in mild CSDH patients undergoing atorvastatin treatment. The prediction model exhibited good discrimination, with an area under the curve (AUC) of 0.82 (95% confidence interval [CI], 0.74-0.90) and good calibration (p = 0.613). The validation analysis showed the AUC of the final prognostic prediction model is 0.80 (95% CI 0.71-0.86) and it has good prediction performance. CONCLUSION: The imaging data-based prediction model has demonstrated great prediction accuracy for good hematoma dissolution in mild CSDH patients undergoing atorvastatin treatment. The study results emphasize the importance of imaging data evaluation in the management of CSDH patients.


Subject(s)
Atorvastatin , Hematoma, Subdural, Chronic , Tomography, X-Ray Computed , Humans , Atorvastatin/therapeutic use , Female , Hematoma, Subdural, Chronic/diagnostic imaging , Hematoma, Subdural, Chronic/drug therapy , Male , Tomography, X-Ray Computed/methods , Aged , Prognosis , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Middle Aged , Retrospective Studies , Aged, 80 and over , Predictive Value of Tests
2.
CNS Neurosci Ther ; 30(3): e14669, 2024 03.
Article in English | MEDLINE | ID: mdl-38459666

ABSTRACT

BACKGROUND: Diffuse brain injury (DBI) models are characterized by intense global brain inflammation and edema, which characterize the most severe form of TBI. In a previous experiment, we found that fingolimod promoted recovery after controlled cortical impact injury (CCI) by modulating inflammation around brain lesions. However, it remains unclear whether fingolimod can also attenuate DBI because of its different injury mechanisms. Furthermore, whether fingolimod has additional underlying effects on repairing DBI is unknown. METHODS: The impact acceleration model of DBI was established in adult Sprague-Dawley rats. Fingolimod (0.5 mg/kg) was administered 0.5, 24, and 48 h after injury for 3 consecutive days. Immunohistochemistry, immunofluorescence analysis, cytokine array, and western blotting were used to evaluate inflammatory cells, inflammatory factors, AQP4 polarization, apoptosis in brain cells, and the accumulation of APP after DBI in rats. To evaluate the function of the glymphatic system (GS), a fluorescent tracer was injected into the cistern. The neural function of rats with DBI was evaluated using various tests, including the modified neurological severity score (mNSS), horizontal ladder-crossing test, beam walking test, and tape sensing and removal test. Brain water content was also measured. RESULTS: Fingolimod administration for 3 consecutive days could reduce the levels of inflammatory cytokines, neutrophil recruitment, microglia, and astrocyte activation in the brain following DBI. Moreover, fingolimod reduced apoptotic protein expression, brain cell apoptosis, brain edema, and APP accumulation. Additionally, fingolimod inhibited the loss of AQP4 polarization, improved lymphatic system function, and reduced damage to nervous system function. Notably, inhibiting the GS weakened the therapeutic effect of fingolimod on the neurological function of rats with DBI and increased the accumulation of APP in the brain. CONCLUSIONS: In brief, these findings suggest that fingolimod alleviates whole-brain inflammation and GS system damage after DBI and that inhibiting the GS could weaken the positive effect of fingolimod on nerve function in rats with DBI. Thus, inhibiting inflammation and regulating the GS may be critical for the therapeutic effect of fingolimod on DBI.


Subject(s)
Brain Edema , Brain Injuries, Diffuse , Brain Injuries, Traumatic , Encephalitis , Glymphatic System , Rats , Animals , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/therapeutic use , Rats, Sprague-Dawley , Glymphatic System/metabolism , Brain Edema/etiology , Encephalitis/complications , Cytokines/metabolism , Inflammation/complications , Disease Models, Animal , Brain Injuries, Traumatic/pathology
3.
Neurosurgery ; 94(3): 497-507, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37796000

ABSTRACT

BACKGROUND AND OBJECTIVES: The focus on evidence-based neurosurgery has led to a considerable amount of neurosurgical evidence based on randomized controlled trials (RCTs) being published. Nevertheless, there has been no systematic appraisal of China's contribution to RCTs. Information about the changes in characteristics of Chinese neurosurgical RCTs before and during the COVID-19 pandemic is limited. This study aims to perform a detailed examination and comprehensive analysis of the characteristics of Chinese neurosurgical RCTs and to examine the differences before and during the COVID-19 pandemic. METHODS: We conducted a comprehensive database search including PubMed, Web of Science, Embase, and Cochrane Library up to March 2023, with a criterion of inclusion based on an impact factor above 0. We subsequently examined the design and quality parameters of the included RCTs and assessed the differences before and during the COVID-19 pandemic (based on follow-up ending before or after January 2020). Moreover, we investigated potential factors that may affect the quality and developmental trends of neurosurgical RCTs in China. RESULTS: The main focus of the 91 neurosurgical RCTs was vascular disease (47.3%) and trauma (18.7%). Over half of the trials used Consolidated Standards of Reporting Trial diagrams (69.2%), and the majority compared nonsurgical treatments (63.7%). Larger trials tended to have better quality scores, but those with significant efficacy were less likely to have power calculations. Over time, there was an increase in the use of Consolidated Standards of Reporting Trial diagrams and well-specified outcomes. The COVID-19 pandemic may have hindered the completion of neurosurgical RCTs in China, but it has had little impact on the design and quality so far. CONCLUSION: Chinese neurosurgeons have made significant progress in advancing neurosurgical RCTs despite challenges. However, shortcomings in sample size and power calculation need attention. Improving the rigor, rationality, and completeness of neurosurgical RCT design is crucial.


Subject(s)
COVID-19 , Neurosurgery , Humans , Randomized Controlled Trials as Topic , Neurosurgical Procedures , Research Design , COVID-19/epidemiology
4.
J Clin Lab Anal ; 36(10): e24706, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36114782

ABSTRACT

BACKGROUND: Chronic subdural hematoma (CSDH) is a common neurosurgical disease with an increasing incidence. The absorption route of CSDH is not clear. Whether inflammatory factors enter the peripheral blood and cause systemic reactions is unknown. METHODS: We screened 105 CSDH patients and 105 control individuals. Their clinical characteristics and blood routine results were collected and compared. The blood routine changes of CSDH patients before and after treatment were compared. Age-stratified analysis was performed due to age may affect the inflammatory markers. RESULTS: The white blood cell count, absolute neutrophil count, neutrophil percentage, neutrophil-lymphocyte count ratio (NLR), and platelet to lymphocyte count ratio (PLR) of CSDH patients before treatment were within the normal range, while were significantly higher than the control individuals (p < 0.001). The absolute lymphocyte count and lymphocyte percentage of control individuals were higher than those of patients (p < 0.001). The inflammatory cells in patients of different age groups were similar. After the patient was cured, the white blood cell count, the absolute value and percentage of neutrophils decreased (p < 0.05), while the number of monocytes increased. CONCLUSIONS: CSDH caused slight systemic inflammatory responses in the peripheral blood, implying that there is a non-hematologic route for the absorption of hematoma.


Subject(s)
Hematoma, Subdural, Chronic , Hematoma, Subdural, Chronic/epidemiology , Hematoma, Subdural, Chronic/etiology , Hematoma, Subdural, Chronic/surgery , Humans , Leukocyte Count , Lymphocyte Count , Lymphocytes , Neutrophils , Retrospective Studies
5.
Front Neurol ; 13: 900145, 2022.
Article in English | MEDLINE | ID: mdl-35937065

ABSTRACT

Subdural hematoma (SDH) is one of the most lethal types of traumatic brain injury. SDH caused by Intracranial Pressure Reduction (ICPR) is rare, and the mechanism remains unclear. Here, we report three cases of SDH that occurred after substandard cupping therapy and are conjected to be associated with ICPR. All of them had undergone cupping treatments. On the last cupping procedure, they experienced a severe headache after the cup placed on the occipital-neck junction (ONJ) was suddenly removed and were diagnosed with SDH the next day. In standard cupping therapy, the cups are not usually placed on the ONJ. We speculate that removing these cups on the soft tissue over the cisterna magna repeatedly created localized negative pressure, caused temporary but repeated ICPR, and eventually led to SDH development. The Monro-Kellie Doctrine can explain the mechanism behind this - it states that the intracranial pressure is regulated by a fixed system, with any change in one component causing a compensatory change in the other. The repeated ICPR promoted brain displacement, tearing of the bridging veins, and development of SDH. The literature was reviewed to illustrate the common etiologies and therapies of secondary ICPR-associated SDH. Despite the popularity of cupping therapy, its side effects are rarely mentioned. This case is reported to remind professional technicians to fully assess a patient's condition before cupping therapy and ensure that the cups are not placed at the ONJ.

6.
J Cereb Blood Flow Metab ; 42(12): 2287-2302, 2022 12.
Article in English | MEDLINE | ID: mdl-35962479

ABSTRACT

The glymphatic-lymphatic fluid transport system (GLFTS) consists of glymphatic pathway and cerebrospinal fluid (CSF) lymphatic outflow routes, allowing biological liquids from the brain parenchyma to access the CSF along with perivascular space and to be cleaned out of the skull through lymphatic vessels. It is known that increased local pressure due to physical compression of tissue improves lymphatic transport in peripheral organs, but little is known about the exact relationship between increased intracranial pressure (IICP) and GLFTS. In this study, we verify our hypothesis that IICP significantly impacts GLFTS, and this effect depends on severity of the IICP. Using a previously developed inflating balloon model to induce IICP and inject fluorescent tracers into the cisterna magna, we found significant impairment of the glymphatic circulation after IICP. We further found that cerebrovascular occlusion occurred, and cerebrovascular pulsation decreased after IICP. IICP also interrupted the drainage of deep cervical lymph nodes and dorsal meningeal lymphatic function, enhancing spinal lymphatic outflow to the sacral lymph nodes. Notably, these effects were associated with the severity of IICP. Thus, our findings proved that the intensity of IICP significantly impacts GLFTS. This may have translational applications for preventing and treating related neurological disorders.


Subject(s)
Glymphatic System , Intracranial Hypertension , Lymphatic Vessels , Humans , Intracranial Pressure , Lymphatic System , Lymphatic Vessels/metabolism , Intracranial Hypertension/cerebrospinal fluid , Brain/metabolism , Hemodynamics , Cerebrospinal Fluid/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...