Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(17): 25810-25823, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34846662

ABSTRACT

The increasing diesel pollution accidents pose a serious threat to the ecological environment and human health. Remediation of diesel-contaminated soil (DCS) has attracted widespread attention during the past few decades. This work proposed an approach for the remediation of DCS by alkoxyethanol aqueous two-phase extraction (ATPE), which was an application of this small molecule aqueous two-phase system (ATPS). In addition, the influence of temperature, stirring speed, stirring time, and solid-liquid ratio on the removal of diesel was explored respectively. The removal efficiency of diesel could reach more than 97.18% in 18 min. Meanwhile, ATPS had high reusability, and the removal efficiency remained above 85.17% in the reuse process. Alkoxyethanol ATPE could effectively remove diesel hydrocarbons with different carbon chain lengths and the remediation process hardly caused residual organic solvents on the soil surface according to the analysis of gas chromatography-mass spectrometry (GC-MS) and Fourier transforms infrared (FT-IR), which could be regarded as the distinct advantage compared to the traditional surfactant washing method and organic solvent extraction method. The study of soil physicochemical properties and wheat germination proved that the soil structure and properties changed little after ATPE remediation. And finally, the mechanism of alkoxyethanol ATPE was intensively discussed according to the remediation characteristic. This work provided an efficient method for the remediation of DCS and widened the application fields of alkoxyethanol ATPS as well.


Subject(s)
Environmental Restoration and Remediation , Soil Pollutants , Environmental Pollution/analysis , Humans , Soil/chemistry , Soil Pollutants/analysis , Spectroscopy, Fourier Transform Infrared , Water/analysis
2.
Fish Shellfish Immunol ; 116: 140-149, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34256134

ABSTRACT

Most antibiotics, insecticides, and other chemicals used in agricultural and fishery production tend to persist in the environment. Fenvalerate, sulfide gatifloxacin, and ridomil are widely used in aquaculture as antibacterial, antifungal, and antiparasitic drugs; however, their toxicity mechanism remains unclear. Thus, we herein analyzed the effects of these three drugs on the hepatopancreas of Procambarus clarkii at the transcriptome level. Twelve normalized cDNA libraries were constructed using RNA extracted from P. clarkii after treatment with fenvalerate, sulfide gatifloxacin, or ridomil and from an untreated control group, followed by Kyoto Encyclopedia of Genes and Genomes pathway analysis. In the control vs fenvalerate and control vs sulfide gatifloxacin groups, 14 and seven pathways were significantly enriched, respectively. Further, the effects of fenvalerate and sulfide gatifloxacin were similar on the hepatopancreas of P. clarkii. We also found that the expression level of genes encoding senescence marker protein-30 and arylsulfatase A was downregulated in the sulfide gatifloxacin group, indicating that sulfide gatifloxacin accelerated the apoptosis of hepatopancreatocytes. The expression level of major facilitator superfamily domain containing 10 was downregulated, implying that it interferes with the ability of the hepatopancreas to metabolize drugs. Interestingly, we found that Niemann pick type C1 and glucosylceramidase-ß potentially interact with each other, consequently decreasing the antioxidant capacity of P. clarkii hepatopancreas. In the fenvalerate group, the downregulation of the expression level of xanthine dehydrogenase indicated that fenvalerate affected the immune system of P. clarkii; moreover, the upregulation of the expression level of pancreatitis-associated protein-2 and cathepsin C indicated that fenvalerate caused possible inflammatory pathological injury to P. clarkii hepatopancreas. In the ridomil group, no pathway was significantly enriched. In total, 21 genes showed significant differences in all three groups. To conclude, although there appears to be some overlap in the toxicity mechanisms of fenvalerate, sulfide gatifloxacin, and ridomil, further studies are warranted.


Subject(s)
Alanine/analogs & derivatives , Anti-Bacterial Agents/toxicity , Astacoidea/drug effects , Fungicides, Industrial/toxicity , Gatifloxacin/toxicity , Insecticides/toxicity , Nitriles/toxicity , Pyrethrins/toxicity , Water Pollutants, Chemical/toxicity , Alanine/toxicity , Animals , Astacoidea/genetics , Gene Expression Profiling , Hepatopancreas/drug effects , Hepatopancreas/metabolism , Transcriptome/drug effects
3.
Fish Shellfish Immunol ; 105: 274-285, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32702478

ABSTRACT

Due to overuse and terrestrial input, there are large quantities of phoxim and prometryne residues in some aquatic environments. In the present study, the effects of these compounds on Penaeus vannamei hepatopancreas were analysed at the transcriptome level to investigate toxicity in this nontarget aquaculture organism. Twelve normalised cDNA libraries were constructed using RNA from phoxim and prometryne treatment groups, and an untreated control group. A total of 667,750,902 clean reads were obtained. Analysis of differentially expressed genes (DEGs) identified 449 in control vs phoxim groups, 185 in control vs prometryne groups, and 183 in prometryne vs phoxim groups. In the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, arachidonic acid metabolism, pancreatic secretion, linoleic acid metabolism, and beta-alanine metabolism pathways were significantly enriched in control vs phoxim groups. In control vs prometryne groups, lysosome, pentose and glucuronate interconversion, antigen processing and presentation, and glycosaminoglycan degradation pathways were significantly enriched. In prometryne vs phoxim groups, protein digestion and absorption, extracellular matrix (ECM)-receptor interaction, PI3K-Akt signalling, cell adhesion molecule (CAM), AGE-RAGE signalling related to diabetic complications, focal adhesion, and renin secretion pathways were significantly enriched. In further detailed analysis, glutathione S-transferase (GST), glutathione peroxidase and basic phospholipase A2 were downregulated in the phoxim treatment group, indicating that phoxim damaged hepatopancreas. Upregulation of phospholipase A2 (secretory phospholipase A2-like) indicates possible inflammatory pathological injury to hepatopancreas caused by phoxim. Meanwhile, downregulation of CD63 indicates that prometryne affect the immune system.


Subject(s)
Hepatopancreas/drug effects , Herbicides/toxicity , Insecticides/toxicity , Organothiophosphorus Compounds/toxicity , Penaeidae/genetics , Prometryne/toxicity , Transcriptome/genetics , Animals , Gene Expression Profiling , Hepatopancreas/metabolism , Penaeidae/drug effects , Random Allocation , Water Pollutants, Chemical/toxicity
4.
Mol Biol Rep ; 46(5): 5143-5154, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31364018

ABSTRACT

Increasing attention has been attracted to host microbiota, due to their vital impact on host health. Little is known about the microbiota of the Chinese giant salamander (Andrias davidianus), in spite of the high economic and scientific value of this endangered species. This study was designed to characterise and compare the gut and lung prokaryotic communities of the Chinese giant salamander by high-throughput sequencing. Our study showed that the giant salamander had a lung prokaryotic community that clustered separately from its intestinal microbiota. Statistical analysis (LEfSe) revealed that the bacterial populations were dominated by Geobacter, Sulfurimonas, and Dechloromonas from Proteobacteria phylum, and Corynebacterium from Actinobacteria phylum in the lung, while Parabacteroides, Bacteroides, and PW3 from Bacteroidetes phylum, and Oscillospira from Firmicutes phylum were predominant in the intestine. A particularly innovative finding was the fairly high abundance of Archaea, especially methanogenic Euryarchaeota. The gut dominant Archaea were Methanocorpusculum and Thermoplasmata vadinCA11, while Methanosaeta and Methanoculleus were the main Archaea in the lung. PICRUSt analysis revealed differentiated functional profiles between the intestinal miacrobiota and the lung microbiota. Specially, some microbial metabolic functions were significantly more active in the intestinal microbiota, while the functional genes involved in infectious diseases were much richer in the lung microbiota. This study characterized the prokaryotic microbial community profiles in the gut and lung of the Chinese giant salamander, providing foundational support for future study seeking to understand microbiota of the giant salamander and the role of its microbiota on infectious diseases.


Subject(s)
Archaea/classification , Bacteria/classification , Gastrointestinal Tract/microbiology , High-Throughput Nucleotide Sequencing/methods , Lung/microbiology , Urodela/microbiology , Animals , Archaea/genetics , Archaea/isolation & purification , Bacteria/genetics , Bacteria/isolation & purification , DNA, Archaeal/genetics , DNA, Bacterial/genetics , Gastrointestinal Microbiome , Organ Specificity , Phylogeny , Sequence Analysis, DNA
5.
Front Microbiol ; 8: 454, 2017.
Article in English | MEDLINE | ID: mdl-28367147

ABSTRACT

Gut microbiota play key roles in host nutrition and metabolism. However, little is known about the relationship between host genetics, gut microbiota and metabolic profiles. Here, we used high-throughput sequencing and gas chromatography/mass spectrometry approaches to characterize the microbiota composition and the metabolite profiles in the gut of five cyprinid fish species with three different feeding habits raised under identical husbandry conditions. Our results showed that host species and feeding habits significantly affect not only gut microbiota composition but also metabolite profiles (ANOSIM, p ≤ 0.05). Mantel test demonstrated that host phylogeny, gut microbiota, and metabolite profiles were significantly related to each other (p ≤ 0.05). Additionally, the carps with the same feeding habits had more similarity in gut microbiota composition and metabolite profiles. Various metabolites were correlated positively with bacterial taxa involved in food degradation. Our results shed new light on the microbiome and metabolite profiles in the gut content of cyprinid fishes, and highlighted the correlations between host genotype, fish gut microbiome and putative functions, and gut metabolite profiles.

SELECTION OF CITATIONS
SEARCH DETAIL
...