Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 11(12)2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34947631

ABSTRACT

With the development of industrial civilization, advanced manufacturing technology has attracted widespread concern, including in the aerospace industry. In this paper, we report the applications of ultra-thin atomic layer deposition nanofilm in the advanced aerospace manufacturing industry, including aluminum anti-oxidation and secondary electron suppression, which are critical in high-power and miniaturization development. The compact and uniform aluminum oxide film, which is formed by thermal atomic layer deposition (ALD), can prevent the deep surface oxidation of aluminum during storage, avoiding the waste of material and energy in repetitive production. The total secondary electron yield of the C/TiN component nanofilm, deposited through plasma-enhanced atomic layer deposition, decreases 25% compared with an uncoated surface. The suppression of secondary electron emission is of great importance in solving the multipactor for high-power microwave components in space. Moreover, the controllable, ultra-thin uniform composite nanofilm can be deposited directly on the complex surface of devices without any transfer process, which is critical for many different applications. The ALD nanofilm shows potential for promoting system performance and resource consumption in the advanced aerospace manufacturing industry.

2.
Chin Phys B ; 29(4): 048703, 2020 Apr.
Article in English | MEDLINE | ID: mdl-34191933

ABSTRACT

The novel coronavirus pneumonia triggered by COVID-19 is now raging the whole world. As a rapid and reliable killing COVID-19 method in industry, electron beam irradiation can interact with virus molecules and destroy their activity. With the unexpected appearance and quickly spreading of the virus, it is urgently necessary to figure out the mechanism of electron beam irradiation on COVID-19. In this study, we establish a virus structure and molecule model based on the detected gene sequence of Wuhan patient, and calculate irradiated electron interaction with virus atoms via a Monte Carlo simulation that track each elastic and inelastic collision of all electrons. The characteristics of irradiation damage on COVID-19, atoms' ionizations and electron energy losses are calculated and analyzed with regions. We simulate the different situations of incident electron energy for evaluating the influence of incident energy on virus damage. It is found that under the major protecting of an envelope protein layer, the inner RNA suffers the minimal damage. The damage for a ∼100-nm-diameter virus molecule is not always enhanced by irradiation energy monotonicity, for COVID-19, the irradiation electron energy of the strongest energy loss damage is 2 keV.

3.
Micron ; 90: 64-70, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27595903

ABSTRACT

This study investigates the mechanism of electron redistribution and multiplication for a SiO2 sample with a buried structure in scanning electron microscopy by numerical simulation. The simulation involved electron scattering and internal charge transport in the sample, the tracking of emitted secondary electrons (SEs), and the generation of tertiary electrons (TEs) produced by returned SEs due to charging of the sample. The results show that a buried grounded structure causes a non-uniform distribution of surface potential, and an electric field above the surface. As a result, although the number of escaped SEs above the margin of the buried structure decreases, the number of generated TEs increases more, leading to a final current of electrons that include escaped SEs and increased TEs. This multiplication of SEs might make a crucial contribution to the abnormal negative-charging contrast in SEM. During the electron beam irradiation, the variation in the number of total escaped electrons presents an obvious increase after an initial slight decrease, which corresponded to the transient characteristics of gray levels in SEM images from dark to abnormally bright.

4.
Micron ; 52-53: 62-6, 2013.
Article in English | MEDLINE | ID: mdl-23953729

ABSTRACT

Combined effects of sample parameters on polymer charging due to electron irradiation are explored by a novel approach of contour in parallel computing. Transient processes of negative charging of a Kapton film sample irradiated by 10 keV electrons are simulated with a simultaneous scattering-transport model and the existing experimental secondary electron current. As a function of sample thickness and electron mobility, the contour maps are then presented of the steady-state leakage current and surface potential and the total charge accumulated in a charging process. It is found that the leakage current and surface potential behave similarly in the contour form, and the total charge has the local maximum with respect to the sample thickness. Generally, the sample thickness affects the charging process more than the electron mobility, but both have less influence in very strong and weak charging states. Accompanied by discussion of charge dissipation effects, this study offers a comprehensive insight into complicated charging phenomena in electron-based surface microscopy, analysis and measurement.

SELECTION OF CITATIONS
SEARCH DETAIL
...