Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Adv Mater ; 35(17): e2209759, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36795948

ABSTRACT

Exchange bias (EB) is highly desirable for widespread technologies. Generally, conventional exchange-bias heterojunctions require excessively large cooling fields for sufficient bias fields, which are generated by pinned spins at the interface of ferromagnetic and antiferromagnetic layers. It is crucial for applicability to obtain considerable exchange-bias fields with minimum cooling fields. Here, an exchange-bias-like effect is reported in a double perovskite, Y2 NiIrO6 , which shows long-range ferrimagnetic ordering below 192 K. It displays a giant bias-like field of 1.1 T with a cooling field of only 15 Oe at 5 K. This robust phenomenon appears below 170 K. This fascinating bias-like effect is the secondary effect of the vertical shifts of the magnetic loops, which is attributed to the pinned magnetic domains due to the combination of strong spin-orbit coupling on Ir, and antiferromagnetically coupled Ni- and Ir-sublattices. The pinned moments in Y2 NiIrO6 are present throughout the full volume, not just at the interface as in conventional bilayer systems.

2.
Inorg Chem ; 61(42): 16632-16638, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36239459

ABSTRACT

Single crystals and polycrystalline samples of Ho5Pd4Sn12 have been synthesized using flux and arc-melting methods, respectively. Single-crystal X-ray diffraction studies indicate that Ho5Pd4Sn12 crystallizes in a tetragonal structure (I4/m) at room temperature and transforms into a monoclinic structure (C2/m) below ∼194 K. This structural transition is further supported by a transmission electron microscopy study and an anomaly at ∼194 K in the specific heat data. Temperature-dependent resistivity data also show a kink around the structural transition temperature. Ho5Pd4Sn12 is antiferromagnetically ordered below 7 K. Ho5Pd4Sn12 shows magnetic anisotropy, and the isothermal magnetization curve (H⊥c) at 2 K exhibits a field-induced magnetic phase transition around 22.8 kOe.

3.
J Phys Condens Matter ; 34(16)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35073531

ABSTRACT

Single crystals of PrFe2Ga8were successfully grown by using Ga self-flux. PrFe2Ga8crystallizes in the CaCo2Al8-type orthorhombic structure with the space groupPbam(no. 55). By combining the results from the magnetic-susceptibility, specific-heat, and resistivity measurements, we show that PrFe2Ga8exhibits a magnetic order at 14 K. ForH//c, the antiferromagnetic order can be suppressed by magnetic fields. However, the magnetic order is robust against magnetic fields forH⊥c. Our results provide basic physical properties of PrFe2Ga8and will help to further understand the magnetism in this system.

4.
Inorg Chem ; 60(7): 4424-4433, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33705141

ABSTRACT

A polycrystalline sample of Tl2Ir2O7 was synthesized by high-pressure and high-temperature methods. Tl2Ir2O7 crystallizes in the cubic pyrochlore structure with space group Fd3̅m (No. 227). The Ir4+ oxidation state is confirmed by Ir-L3 X-ray absorption near-edge spectroscopy. Combined temperature-dependent magnetic susceptibility, resistivity, specific heat, and DFT+DMFT calculation data show that Tl2Ir2O7 is a Pauli paramagnetic metal, but it is close to a metal-insulator transition. The effective ionic size of Tl3+ is much smaller than that of Pr3+ in metallic Pr2Ir2O7; hence, Tl2Ir2O7 would be expected to be insulating according to the established phase diagram of the pyrochlore iridate compounds, A3+2Ir4+2O7. Our experimental and theoretical studies indicate that Tl2Ir2O7 is uniquely different from the current A3+2Ir4+2O7 phase diagram. This uniqueness is attributed primarily to the electronic configuration difference between Tl3+ and rare-earth ions, which plays a substantial role in determining the Ir-O-Ir bond angle, and the corresponding electrical and magnetic properties.

5.
Inorg Chem ; 60(2): 1241-1247, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33373217

ABSTRACT

Double perovskite oxides with d8-d3 electronic configurations are expected to be ferromagnetic from the Goodenough-Kanamori rules, such as ferromagnetic La2NiMnO6. In search of new ferromagnetic insulators, double perovskite Ba2NiIrO6 was successfully synthesized by high-pressure and high-temperature methods (8 GPa and 1573 K). Ba2NiIrO6 crystallizes in a cubic double perovskite structure (space group: Fm3̅m), with an ordered arrangement of NiO6 and IrO6 octahedra. X-ray absorption near-edge spectroscopy confirms the nominal Ni(II) and Ir(VI) valence states. Ba2NiIrO6 displays an antiferromagnetic order at 51 K. The positive Weiss temperature, however, indicates that ferromagnetic interactions are dominant. Isothermal magnetization curves at low temperatures support a field-induced spin-flop transition.

6.
Inorg Chem ; 59(6): 4049-4057, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32096400

ABSTRACT

Polycrystalline Sr3OsO6, which is an ordered double-perovskite insulator, is synthesized via solid-state reaction under high-temperature and high-pressure conditions of 1200 °C and 6 GPa. The synthesis enables us to conduct a comparative study of the bulk form of Sr3OsO6 toward revealing the driving mechanism of 1000 K ferromagnetism, which has recently been discovered for epitaxially grown Sr3OsO6 films. Unlike the film, the bulk is dominated by antiferromagnetism rather than ferromagnetism. Therefore, robust ferromagnetic order appears only when Sr3OsO6 is under the influence of interfaces. A specific heat capacity of 39.6(9) × 10-3 J mol-1 K-2 is found at low temperatures (<17 K). This value is remarkably high, suggesting the presence of possible Fermionic-like excitations at the magnetic ground state. Although the bulk and film forms of Sr3OsO6 share the same lattice basis and electrically insulating state, the magnetism is entirely different between them.

7.
Inorg Chem ; 58(23): 15953-15961, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31724852

ABSTRACT

The corundum-related oxides Mn2ScNbO6 and Mn2ScTaO6 were synthesized at high pressure and high temperature (6 GPa and 1475 K). Analysis of the synchrotron powder X-ray diffraction shows that Mn2ScNbO6 and Mn2ScTaO6 crystallize in Ni3TeO6-type noncentrosymmetric crystal structures with space group R3. The asymmetric crystal structure was confirmed by second harmonic generation measurement. X-ray absorption near-edge spectroscopies indicate formal valence states of Mn2+2Sc3+Nb5+O6 and Mn2+2Sc3+Ta5+O6, also supported by the calculated bond valence sums. Both samples are electrically insulating. Magnetic measurements indicate that Mn2ScNbO6 and Mn2ScTaO6 order ferrimagnetically at 53 and 50 K, respectively, and Mn2ScTaO6 is found to have a field-induced magnetic transition.

8.
Chem Commun (Camb) ; 55(23): 3331-3334, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30815646

ABSTRACT

Mn2CoReO6, the fourth known magnetic transition-metal-only double perovskite oxide (space group P21/n) was synthesized at high pressure and temperature (8 GPa, 1350 °C). Large structural distortions are induced by the small A-site Mn2+ cations. Mn2CoReO6 exhibits complex magnetic properties with a robust antiferromagnetic order (TN = 94 K) involving all cation sublattices.

9.
Inorg Chem ; 58(1): 397-404, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30557015

ABSTRACT

Double-perovskite Lu2NiIrO6 was synthesized at high pressure (6 GPa) and high temperature (1300 °C). Synchrotron powder X-ray diffraction indicates that its structure is a monoclinic double perovskite (space group P21/ n) with a small, 11% Ni/Ir antisite disorder. X-ray absorption near-edge spectroscopy measurements established Ni2+ and Ir4+ formal oxidation states. Magnetic studies indicate a ferrimagnetic transition at 207 K. The low-temperature magnetization curve of Lu2NiIrO6 features broad hysteresis with a coercive field as high as 48 kOe. These results encourage the search for hard magnets in the class of 3d/5d double-perovskite oxides.

10.
Inorg Chem ; 54(7): 3422-31, 2015 Apr 06.
Article in English | MEDLINE | ID: mdl-25751088

ABSTRACT

Double-perovskite oxides Ca2MgOsO6 and Sr2MgOsO6 have been synthesized under high-pressure and high-temperature conditions (6 GPa and 1500 °C). Their crystal structures and magnetic properties were studied by a synchrotron X-ray diffraction experiment and by magnetic susceptibility, specific heat, isothermal magnetization, and electrical resistivity measurements. Ca2MgOsO6 and Sr2MgOsO6 crystallized in monoclinic (P21/n) and tetragonal (I4/m) double-perovskite structures, respectively; the degree of order of the Os and Mg arrangement was 96% or higher. Although Ca2MgOsO6 and Sr2MgOsO6 are isoelectric, a magnetic-glass transition was observed for Ca2MgOsO6 at 19 K, while Sr2MgOsO6 showed an antiferromagnetic transition at 110 K. The antiferromagnetic-transition temperature is the highest in the family. A first-principles density functional approach revealed that Ca2MgOsO6 and Sr2MgOsO6 are likely to be antiferromagnetic Mott insulators in which the band gaps open, with Coulomb correlations of ∼1.8-3.0 eV. These compounds offer a better opportunity for the clarification of the basis of 5d magnetic sublattices, with regard to the possible use of perovskite-related oxides in multifunctional devices. The double-perovskite oxides Ca2MgOsO6 and Sr2MgOsO6 are likely to be Mott insulators with a magnetic-glass (MG) transition at ∼19 K and an antiferromagnetic (AFM) transition at ∼110 K, respectively. This AFM transition temperature is the highest among double-perovskite oxides containing single magnetic sublattices. Thus, these compounds offer valuable opportunities for studying the magnetic nature of 5d perovskite-related oxides, with regard to their possible use in multifunctional devices.

11.
J Am Chem Soc ; 136(9): 3326-9, 2014 Mar 05.
Article in English | MEDLINE | ID: mdl-24552166

ABSTRACT

5d and 3d hybrid solid-state oxide Ca2FeOsO6 crystallizes into an ordered double-perovskite structure with a space group of P21/n with high-pressures and temperatures. Ca2FeOsO6 presents a long-range ferrimagnetic transition at a temperature of ~320 K (T(c)) and is not a band insulator, but is electrically insulating like the recently discovered Sr2CrOsO6 (T(c) ~725 K). The electronic stat of Ca2FeOsO6 is adjacent to a half-metallic state as well as that of Sr2CrOsO6. In addition, the high-T(c) ferrimagnetism was driven by lattice distortion, which was observed for the first time among double-perovskite oxides and represents complex interplays between spins and orbitals. Unlike conventional ferrite and garnet, the interplays likely play a pivotal role of the ferrimagnetism. A new class of 5d-3d hybrid ferrimagnetic insulators with high-T(c) is established to develop practically and scientifically useful spintronic materials.

12.
Sci Technol Adv Mater ; 15(6): 064901, 2014 Dec.
Article in English | MEDLINE | ID: mdl-27877729

ABSTRACT

5d Solid-state oxides K0.84OsO3 (Os5.16+; 5d2.84) and Bi2.93Os3O11 (Os4.40+; 5d3.60) were synthesized under high-pressure and high-temperature conditions (6 GPa and 1500-1700 °C). Their crystal structures were determined by synchrotron x-ray diffraction and their 5d electronic properties and tunnel-like structure motifs were investigated. A KSbO3-type structure with a space group of Im-3 and Pn-3 was determined for K0.84OsO3 and Bi2.93Os3O11, respectively. The magnetic and electronic transport properties of the polycrystalline compounds were compared with those obtained theoretically. It was revealed that the 5d tunnel-like structures are paramagnetic with metallic charge conduction at temperatures above 2 K. This was similar to what was observed for structurally relevant 5d oxides, including Bi3Re3O11 (Re4.33+; 5d2.66) and Ba2Ir3O9 (Ir4.66+; 5d4.33). The absence of long-range magnetic order seems to be common among 5d KSbO3-like oxides, regardless of the number of 5d electrons (between 2.6 and 4.3 per 5d atom).

SELECTION OF CITATIONS
SEARCH DETAIL
...