Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Plant ; 17(5): 772-787, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38581129

ABSTRACT

The phytohormone auxin plays a pivotal role in governing plant growth and development. Although the TRANSPORT INHIBITOR RESPONSE1/AUXIN SIGNALING F-BOX (TIR1/AFB) receptors function in both the nucleus and cytoplasm, the mechanism governing the distribution of TIR1/AFBs between these cellular compartments remains unknown. In this study, we demonstrate that auxin-mediated oxidation of TIR1/AFB2 is essential for their targeting to the nucleus. We showed that small active molecules, reactive oxygen species (ROS) and nitric oxide (NO), are indispensable for the nucleo-cytoplasmic distribution of TIR1/AFB2 in trichoblasts and root hairs. Further studies revealed that this process is regulated by the FERONIA receptor kinase-NADPH oxidase signaling pathway. Interestingly, ROS and NO initiate oxidative modifications in TIR1C140/516 and AFB2C135/511, facilitating their subsequent nuclear import. The oxidized forms of TIR1C140/516 and AFB2C135/511 play a crucial role in enhancing the function of TIR1 and AFB2 in transcriptional auxin responses. Collectively, our study reveals a novel mechanism by which auxin stimulates the transport of TIR1/AFB2 from the cytoplasm to the nucleus, orchestrated by the FERONIA-ROS signaling pathway.


Subject(s)
Arabidopsis Proteins , Arabidopsis , F-Box Proteins , Indoleacetic Acids , Oxidation-Reduction , Protein Serine-Threonine Kinases , Signal Transduction , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cell Nucleus/metabolism , F-Box Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Nitric Oxide/metabolism , Phosphotransferases/metabolism , Reactive Oxygen Species/metabolism , Receptors, Cell Surface/metabolism
2.
J Exp Bot ; 75(3): 721-732, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-37904584

ABSTRACT

Ubiquitination, a vital post-translational modification in plants, plays a significant role in regulating protein activity, localization, and stability. This process occurs through a complex enzyme cascade that involves E1, E2, and E3 enzymes, leading to the covalent attachment of ubiquitin molecules to substrate proteins. Conversely, deubiquitinating enzymes (DUBs) work in opposition to this process by removing ubiquitin moieties. Despite extensive research on ubiquitination in plants, our understanding of the function of DUBs is still emerging. UBP12 and UBP13, two plant DUBs, have received much attention recently and are shown to play pivotal roles in hormone signaling, light perception, photoperiod responses, leaf development, senescence, and epigenetic transcriptional regulation. This review summarizes current knowledge of these two enzymes, highlighting the central role of deubiquitination in regulating the abundance and activity of critical regulators such as receptor kinases and transcription factors during phytohormone and developmental signaling.


Subject(s)
Protein Processing, Post-Translational , Ubiquitin , Ubiquitination , Ubiquitin/metabolism , Deubiquitinating Enzymes/metabolism , Hormones
3.
Int J Mol Sci ; 23(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35742945

ABSTRACT

Cold limits the growth and yield of maize in temperate regions, but the molecular mechanism of cold adaptation remains largely unexplored in maize. To identify early molecular events during cold shock, maize seedlings were treated under 4 °C for 30 min and 2 h, and analyzed at both the proteome and phosphoproteome levels. Over 8500 proteins and 19,300 phosphopeptides were quantified. About 660 and 620 proteins were cold responsive at protein abundance or site-specific phosphorylation levels, but only 65 proteins were shared between them. Functional enrichment analysis of cold-responsive proteins and phosphoproteins revealed that early cold response in maize is associated with photosynthesis light reaction, spliceosome, endocytosis, and defense response, consistent with similar studies in Arabidopsis. Thirty-two photosynthesis proteins were down-regulated at protein levels, and 48 spliceosome proteins were altered at site-specific phosphorylation levels. Thirty-one kinases and 33 transcriptional factors were cold responsive at protein, phosphopeptide, or site-specific phosphorylation levels. Our results showed that maize seedlings respond to cold shock rapidly, at both the proteome and phosphoproteome levels. This study provides a comprehensive landscape at the cold-responsive proteome and phosphoproteome in maize seedlings that can be a significant resource to understand how C4 plants respond to a sudden temperature drop.


Subject(s)
Arabidopsis , Proteome , Arabidopsis/metabolism , Cold Temperature , Phosphopeptides/metabolism , Phosphoproteins/metabolism , Plant Proteins/metabolism , Proteome/metabolism , Seedlings/metabolism , Zea mays/genetics , Zea mays/metabolism
4.
Int J Mol Sci ; 22(23)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34884660

ABSTRACT

Protein phosphorylation plays an important role in mediating signal transduction in cold response in plants. To better understand how plants sense and respond to the early temperature drop, we performed data-independent acquisition (DIA) method-based mass spectrometry analysis to profile the proteome and phosphoproteome of Arabidopsis seedlings upon cold stress in a time-course manner (10, 30 and 120 min of cold treatments). Our results showed the rapid and extensive changes at the phosphopeptide levels, but not at the protein abundance levels, indicating cold-mediated protein phosphorylation and dephosphorylation events. Alteration of over 1200 proteins at phosphopeptide levels were observed within 2 h of cold treatment, including over 140 kinases, over 40 transcriptional factors and over 40 E3 ligases, revealing the complexity of regulation of cold adaption. We summarized cold responsive phosphoproteins involved in phospholipid signaling, cytoskeleton reorganization, calcium signaling, and MAPK cascades. Cold-altered levels of 73 phosphopeptides (mostly novel cold-responsive) representing 62 proteins were validated by parallel reaction monitoring (PRM). In summary, this study furthers our understanding of the molecular mechanisms of cold adaption in plants and strongly supports that DIA coupled with PRM are valuable tools in uncovering early signaling events in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cold-Shock Response , Phosphoproteins/metabolism , Proteome/metabolism , Arabidopsis/growth & development , Phosphorylation , Proteome/analysis , Seedlings/growth & development , Seedlings/metabolism , Signal Transduction
5.
Planta ; 254(6): 133, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34821984

ABSTRACT

MAIN CONCLUSION: A pollen specific homolog to a xyloglucan galactosyltransferase regulates cell wall stability and therefore pollen tube growth in Arabidopsis. In angiosperms, pollen tubes grow through the transmitting tract to deliver the sperm cells to the ovule for fertilization. Fast growing pollen tubes coordinate the synthesis, secretion and assembly of cell wall components to maintain the mechanical properties of the cell wall. Xyloglucan, the major hemicellulosic polysaccharide in the primary cell wall, tethers cellulose to form the complexed cell wall network through its side chain modifications. How the side chain modifications of the xyloglucan regulate the pollen tube cell wall strength and growth remains elusive. Here we found that AtGT11, a MUR3 xyloglucan galactosyltransferase homolog highly expressed in pollen regulated the cell wall stability of pollen tubes. Genetic analysis of the gt11 and the xylosyltransferase 1/2 mutant indicated that the xylosylation of XyG side chains played dominant role while galactosylation of the XyG side chains finely modified the cell wall mechanics.


Subject(s)
Pollen Tube , Xylans , Cell Wall , Glucans
6.
Front Plant Sci ; 12: 517742, 2021.
Article in English | MEDLINE | ID: mdl-33746991

ABSTRACT

Potassium (K+) is one of essential mineral elements for plant growth and development. K+ channels, especially AKT1-like channels, play crucial roles in K+ uptake in plant roots. Maize is one of important crops; however, the K+ uptake mechanism in maize is little known. Here, we report the physiological functions of K+ channel ZMK1 in K+ uptake and homeostasis in maize. ZMK1 is a homolog of Arabidopsis AKT1 channel in maize, and mainly expressed in maize root. Yeast complementation experiments and electrophysiological characterization in Xenopus oocytes indicated that ZMK1 could mediate K+ uptake. ZMK1 rescued the low-K+-sensitive phenotype of akt1 mutant and enhanced K+ uptake in Arabidopsis. Overexpression of ZMK1 also significantly increased K+ uptake activity in maize, but led to an oversensitive phenotype. Similar to AKT1 regulation, the protein kinase ZmCIPK23 interacted with ZMK1 and phosphorylated the cytosolic region of ZMK1, activating ZMK1-mediated K+ uptake. ZmCIPK23 could also complement the low-K+-sensitive phenotype of Arabidopsis cipk23/lks1 mutant. These findings demonstrate that ZMK1 together with ZmCIPK23 plays important roles in K+ uptake and homeostasis in maize.

7.
Int J Mol Sci ; 23(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35008809

ABSTRACT

Potassium and nitrogen are essential mineral elements for plant growth and development. The protein kinase LKS1/CIPK23 is involved in both K+ and NH4+ uptake in Arabidopsis root. The transcripts of LKS1 can be induced by low K+ (0.1 mM) and high NH4+ (30 mM); however, the molecular mechanism is still unknown. In this study, we isolated the transcription factor STOP1 that positively regulates LKS1 transcription in Arabidopsis responses to both low-K+ and high-NH4+ stresses. STOP1 proteins can directly bind to the LKS1 promoter, promoting its transcription. The stop1 mutants displayed a leaf chlorosis phenotype similar to lks1 mutant when grown on low-K+ and high-NH4+ medium. On the other hand, STOP1 overexpressing plants exhibited a similar tolerant phenotype to LKS1 overexpressing plants. The transcript level of STOP1 was only upregulated by low K+ rather than high NH4+; however, the accumulation of STOP1 protein in the nucleus was required for the upregulation of LKS1 transcripts in both low-K+ and high-NH4+ responses. Our data demonstrate that STOP1 positively regulates LKS1 transcription under low-K+ and high-NH4+ conditions; therefore, LKS1 promotes K+ uptake and inhibits NH4+ uptake. The STOP1/LKS1 pathway plays crucial roles in K+ and NH4+ homeostasis, which coordinates potassium and nitrogen balance in plants in response to external fluctuating nutrient levels.


Subject(s)
Ammonium Compounds/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Arabidopsis/physiology , Potassium/metabolism , Stress, Physiological , Transcription Factors/metabolism , Transcription, Genetic , Arabidopsis/drug effects , Arabidopsis Proteins/metabolism , Base Sequence , Gene Expression Regulation, Plant , Genes, Plant , Models, Biological , Mutation/genetics , Plant Roots/metabolism , Potassium/pharmacology , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Protoplasts/drug effects , Protoplasts/metabolism , Stress, Physiological/drug effects , Stress, Physiological/genetics , Transcription, Genetic/drug effects
8.
Mol Plant ; 12(12): 1612-1623, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31541739

ABSTRACT

Pollen tube growth is crucial for successful fertilization. In Arabidopsis thaliana, the ANXUR (ANX)/BUPS receptor kinase complex controls and maintains pollen tube growth in response to autocrine rapid alkalinization factor 4/19 (RALF4/19) signaling; however, the molecular and cellular mechanisms underlying the ANX/BUPS-mediated regulation of pollen tube growth remain unclear. In this study, we found that pollen-specific LORELEI-like GPI-anchored proteins 2 and 3 (LLG2/3) promote pollen tube growth in vitro and in vivo. LLG2/3 interacte with ANX/BUPS in a RALF4-concentration-dependent manner, suggesting that ANX/BUPS and LLG2/3 might form a receptor-coreceptor complex for perceiving RALF peptide signals. Disruption of the ANX/BUPS-LLG2/3 interaction led to the cytoplasmic retention of ANX1/2, in either llg2/3 knockdown mutants or in anx1/2 mutants lacking the J region, which mediates the ANX/BUPS-LLG2/3 interaction. Moreover, we found that RALF4 induced the production of reactive oxygen species (ROS), which stimulate pollen tube growth and reduce pollen burst rate. ROS levels are reduced in the pollen tubes of LLG2/3 RNAi lines, and application of exogenous H2O2 could partially rescue the defective pollen tube growth of LLG2/3 RNAi lines. Taken together, our study identifies LLG2/3 as novel regulatory components of pollen tube growth, and shows that they chaperone ANX/BUPS for secretion to the apical plasma membrane of pollen tube and act as coreceptors of ANX/BUPS in the activation of ROS production for promoting pollen tube growth.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , GPI-Linked Proteins/metabolism , Pollen Tube/growth & development , Protein Kinases/metabolism , Carrier Proteins/metabolism , Cytoplasm/metabolism , Gene Expression Regulation, Plant
9.
Plant J ; 74(2): 258-66, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23331977

ABSTRACT

Potassium transporters and channels play crucial roles in K+ uptake and translocation in plant cells. These roles are essential for plant growth and development. AKT1 is an important K+ channel in Arabidopsis roots that is involved in K+ uptake. It is known that AKT1 is activated by a protein kinase CIPK23 interacting with two calcineurin B-like proteins CBL1/CBL9. The present study showed that another calcineurin B-like protein (CBL10) may also regulate AKT1 activity. The CBL10-over-expressing lines showed a phenotype as sensitive as that of the akt1 mutant under low-K+ conditions. In addition, the K+ content of both CBL10-over-expressing lines and akt1 mutant plants were significantly reduced compared with wild-type plants. Moreover, CBL10 directly interacted with AKT1, as verified in yeast two-hybrid, BiFC and co-immunoprecipitation experiments. The results of electrophysiological analysis in both Xenopus oocytes and Arabidopsis root cell protoplasts demonstrated that CBL10 impairs AKT1-mediated inward K+ currents. Furthermore, the results from the yeast two-hybrid competition assay indicated that CBL10 may compete with CIPK23 for binding to AKT1 and negatively modulate AKT1 activity. The present study revealed a CBL-interacting protein kinase-independent regulatory mechanism of calcineurin B-like proteins in which CBL10 directly regulates AKT1 activity and affects ion homeostasis in plant cells.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Calcium-Binding Proteins/metabolism , Potassium Channels/metabolism , Potassium/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Calcium-Binding Proteins/genetics , Immunoprecipitation , Patch-Clamp Techniques , Polymerase Chain Reaction , Potassium Channels/genetics , Protein Binding , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...