Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell Biochem ; 2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37659033

ABSTRACT

Excessive inflammation and autophagy defect of chondrocytes play important roles in the pathological process of osteoarthritis (OA). The present study aimed to clarify the roles of small novel rich in cartilage (SNORC) in these pathological changes of chondrocytes in OA. Bioinformatics analysis of GEO dataset GSE207881 displayed that SNORC was a potential biomarker for OA. As confirmed by quantitative real-time PCR, immunohistochemical staining and western blotting, SNORC was significantly up-regulated in cartilage of OA rat model and interleukin (IL)-1ß-stimulated primary rat articular chondrocytes in contrast to their corresponding normal control. Knocking down SNORC in IL-1ß-induced chondrocytes obviously suppressed the production of nitric oxide (NO), IL-6, tumor necrosis factor (TNF)-α and prostaglandin E2 (PGE2) to alleviate inflammation, and reduced the protein levels of a disintegrin and metalloproteinase with thrombospondin 5 (ADAMTS5) and matrix metallopeptidase (MMP)13 and elevated collagen type 2 alpha 1 (COL2A1) level to improve matrix degradation. Down-regulation of SNORC increased Beclin1 expression and LC3II/LC3I ratio, but suppressed p62 expression to restore impaired autophagy in IL-1ß-induced chondrocytes. Moreover, down-regulating SNORC mitigated mitochondrial dysfunction and apoptosis in IL-1ß-stimulated chondrocytes. Mechanically, SNORC simultaneously activated the phosphatidylinositol-3-kinase/serine threonine kinase (PI3K/AKT) and c-Jun N-terminal kinase (JNK)/c-Jun signaling pathway in the IL-1ß-induced chondrocyte, while re-activating the PI3K and JNK signals abolished the suppressive effect of down-regulating SNORC on IL-1ß-induced chondrocyte damage. In a word, SNORC knockdown alleviates inflammation, matrix degradation, autophagy defect and excessive apoptosis of chondrocytes during OA development via suppressing the PI3K and JNK signaling pathway.

2.
BMC Med Genomics ; 16(1): 115, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37231440

ABSTRACT

OBJECTIVE: Dysregulated lipid metabolism enhances the development and advancement of many cancers, including osteosarcoma (OS); however, the underlying mechanisms are still largely unknown. Therefore, this investigation aimed to elucidate novel potential lipid metabolism-related long non-coding RNAs (lncRNAs) that regulate OS development and provide novel signatures for its prognosis and precise treatment. MATERIALS AND METHODS: The GEO datasets (GSE12865 and GSE16091) were downloaded and analyzed using R software packages. Immunohistochemistry (IHC) was used to evaluate protein levels in OS tissues while real-time qPCR was used to measure lncRNA levels, and MTT assays were used to assess OS cell viability. RESULTS: Two lipid metabolism-associated lncRNAs (LM-lncRNAs), small nucleolar RNA host gene 17 (SNHG17) and LINC00837, were identified as efficient and independent prognostic indicators for OS. In addition, further experiments confirmed that SNHG17 and LINC00837 were significantly elevated in OS tissues and cells than para-cancerous counterparts. Knockdown of SNHG17 and LINC00837 synergistically suppressed the viability of OS cells, whereas overexpression of the two lncRNAs promoted OS cell proliferation. Moreover, bioinformatics analysis was conducted to construct six novel SNHG17-microRNA-mRNA competing endogenous RNA (ceRNA) networks, and three lipid metabolism-associated genes (MIF, VDAC2, and CSNK2A2) were found to be abnormally upregulated in OS tissues, suggesting that they were potential effector genes of SNHG17. CONCLUSION: In summary, SNHG17 and LINC00837 were found to promote OS cell malignancy, suggesting their use as ideal biomarkers for OS prognosis and treatment.


Subject(s)
Bone Neoplasms , MicroRNAs , Osteosarcoma , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Lipid Metabolism/genetics , Prognosis , MicroRNAs/genetics , MicroRNAs/metabolism , Osteosarcoma/genetics , Osteosarcoma/pathology , Bone Neoplasms/genetics , Gene Expression Regulation, Neoplastic
SELECTION OF CITATIONS
SEARCH DETAIL
...