Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Arch Osteoporos ; 19(1): 65, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39043915

ABSTRACT

The impact of milk on bone health in rural preschoolers is under-researched. This study, through a clinical trial and a meta-analysis, finds that milk supplementation enhances forearm and calcaneus bone acquisition in children, supporting the benefits of daily milk consumption. PURPOSE: This study evaluated the impact of dairy supplementation on bone acquisition in children's limbs through a cluster-randomized controlled trial and a meta-analysis. METHODS: The trial involved 315 children (4-6 year) from Northwest China, randomized to receive either 390 ml of milk daily (n = 215) or 20-30 g of bread (n = 100) over 12 months. We primarily assessed bone mineral density (BMD) and content (BMC) changes at the limbs, alongside bone-related biomarkers, measured at baseline, the 6th and 12th months. The meta-analysis aggregated BMD or BMC changes in the forearm/legs/calcaneus from published randomized trials involving children aged 3-18 years supplemented with dairy foods (vs. control group). RESULTS: Of 278 completed the trial, intention-to-treat analysis revealed significant increases in BMD (4.05% and 7.31%) and BMC (4.69% and 7.34%) in the left forearm at the 6th and 12th months in the milk group compared to controls (P < 0.001). The calcaneus showed notable improvements in BMD (2.01%) and BMC (1.87%) at 6 months but not at 12 months. Additionally, milk supplementation was associated with beneficial changes in bone resorption markers, parathyroid hormone (- 12.70%), insulin-like growth factor 1 (6.69%), and the calcium-to-phosphorus ratio (2.22%) (all P < 0.05). The meta-analysis, encompassing 894 children, indicated that dairy supplementation significantly increased BMD (SMD, 0.629; 95%CI: 0.275, 0.983) and BMC (SMD, 0.616; 95%CI: 0.380, 0.851) (P < 0.05) in the arms, but not in the legs (P > 0.05). CONCLUSION: Milk supplementation significantly improves bone health in children's forearms, underscoring its potential as a strategic dietary intervention for bone development. Trial registration NCT05074836.


Subject(s)
Bone Density , Dietary Supplements , Child , Child, Preschool , Female , Humans , Male , Bone Density/drug effects , Bone Development/physiology , Calcaneus/diagnostic imaging , China , Forearm , Milk , Adolescent
2.
Nutrients ; 15(21)2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37960207

ABSTRACT

(1) Background: Probiotics in the form of nutritional supplements are safe and potentially useful for strategic application among endurance athletes. Bifidobacterium animalis lactis BL-99 (BL-99) was isolated from the intestines of healthy Chinese infants. We combined plasma-targeted metabolomics and fecal metagenomics to explore the effect of 8 weeks of BL-99 supplementation on cross-country skiers' metabolism and sports performance. (2) Methods: Sixteen national top-level male cross-country skiers were recruited and randomly divided into a placebo group (C) and a BL-99 group (E). The participants took the supplements four times/day (with each of three meals and at 21:00) consistently for 8 weeks. The experiment was conducted in a single-blind randomized fashion. The subject's dietary intake and total daily energy consumption were recorded. Blood and stool samples were collected before and after the 8-week intervention, and body composition, muscle strength, blood biochemical parameters, plasma-targeted metabolomic data, and fecal metagenomic data were then analyzed. (3) Results: The following changes occurred after 8 weeks of BL-99 supplementation: (a) There was no significant difference in the average total daily energy consumption and body composition between the C and E groups. (b) The VO2max and 60°/s and 180°/s knee joint extensor strength significantly increased in both the C and E groups. By the eighth week, the VO2max and 60 s knee-joint extensor strength were significantly higher in the E group than in the C group. (c) The triglyceride levels significantly decreased in both the C and E groups. In addition, the LDL-C levels significantly decreased in the E group. (d) The abundance of Bifidobacterium animalis increased two-fold in the C group and forty-fold in the E group. (e) Plasma-targeted metabolomic analysis showed that, after eight weeks of BL-99 supplementation, the increases in DHA, adrenic acid, linoleic acid, and acetic acid and decreases in glycocholic acid and glycodeoxycholic acid in the E group were significantly higher than those in the C group. (f) Spearman correlation analysis showed that there was a significant positive correlation between Bifidobacterium animalis' abundance and SCFAs, PUFAs, and bile acids. (g) There was a significant correlation between the most significantly regulated metabolites and indicators related to sports performance and lipid metabolism. (4) Conclusions: Eight weeks of BL-99 supplementation combined with training may help to improve lipid metabolism and sports performance by increasing the abundance of Bifidobacterium, which can promote the generation of short-chain fatty acids and unsaturated fatty acids, and inhibit the synthesis of bile acids.


Subject(s)
Athletic Performance , Bifidobacterium animalis , Probiotics , Humans , Male , Bile Acids and Salts , Dietary Supplements , Fatty Acids, Volatile/analysis , Lipid Metabolism , Single-Blind Method
3.
Front Nutr ; 10: 1273531, 2023.
Article in English | MEDLINE | ID: mdl-37867495

ABSTRACT

Introduction: Anxiety disorders continue to prevail as the most prevalent cluster of mental disorders following the COVID-19 pandemic, exhibiting substantial detrimental effects on individuals' overall well-being and functioning. Even after a search spanning over a decade for novel anxiolytic compounds, none have been approved, resulting in the current anxiolytic medications being effective only for a specific subset of patients. Consequently, researchers are investigating everyday nutrients as potential alternatives to conventional medicines. Our prior study analyzed the antianxiety and memory-enhancing properties of the combination of Walnut Peptide (WP) and Casein Peptide (CP) in zebrafish. Methods and Results: Based on this work, our current research further validates their effects in mice models exhibiting elevated anxiety levels through a combination of gavage oral administration. Our results demonstrated that at 170 + 300 mg human dose, the WP + CP combination significantly improved performances in relevant behavioral assessments related to anxiety and memory. Furthermore, our analysis revealed that the combination restores neurotransmitter dysfunction observed while monitoring Serotonin, gamma-aminobutyric acid (GABA), dopamine (DA), and acetylcholine (ACh) levels. This supplementation also elevated the expression of brain-derived neurotrophic factor mRNA, indicating protective effects against the neurological stresses of anxiety. Additionally, there were strong correlations among behavioral indicators, BDNF (brain-derived neurotrophic factor), and numerous neurotransmitters. Conclusion: Hence, our findings propose that the WP + CP combination holds promise as a treatment for anxiety disorder. Besides, supplementary applications are feasible when produced as powdered dietary supplements or added to common foods like powder, yogurt, or milk.

4.
Front Nutr ; 10: 1242157, 2023.
Article in English | MEDLINE | ID: mdl-37693249

ABSTRACT

Objectives: Obesity is often associated with glucolipid and/or energy metabolism disorders. Ascophyllum nodosum extract (seaweed extract, SE) and Camellia sinensis-leaf extract (tea extract, TE) have been reported to promote positive metabolic effects through different mechanisms. We investigated the effects of SE and TE on metabolic homeostasis in diet-induced obese mice and discussed their functional characteristics. Methods: Male C57BL/6J mice fed with high-fat diets for 8 weeks were established as obese models and subsequently divided into different intervention groups, followed by SE, TE, and their joint interventions for 10 weeks. Body weight and food intake were monitored. Fasting glucose and oral glucose tolerance tests were interspersed during the experiment. After the intervention, the effects on obesity control were assessed based on body composition, liver pathology section, blood lipids and glucose, respiratory exchange ratio (RER), energy expenditure (EE1, EE2, and EE3), inflammatory factors, lipid anabolism enzymes, and gut flora of the obese mice. Results: After continuous gavage intervention, the mice in the intervention groups exhibited lower body weight (lower ~4.93 g, vs. HFD 38.02 g), peri-testicular fat masses (lower ~0.61 g, vs. HFD 1.92 g), and perirenal fat masses (lower ~0.21 g, vs. HFD mice 0.70 g). All interventions prevented diet-induced increases in plasma levels of glucose, adiponectin, leptin, and the inflammatory factors IL-1ß and TNF-α. The RER was modified by the interventions, while the rhythm of the RER was not. Blood lipids (total cholesterol, triglycerides, and LDL) decreased and were associated with lower lipid anabolism enzymes. In addition, the SE and TE interventions altered the structure and abundance of specific flora. Different interventions inhibited the growth of different genera positively associated with obesity (Escherichia-Shigella, Helicobacter, etc.) and promoted the growth of Akkermansia and Bacteroides, thus affecting the chronic inflammatory state. Conclusion: SE and TE both have synergistic effects on weight control and glucolipid metabolism regulation by improving insulin sensitivity and reducing lipid synthesis-related enzyme expression, whereas the combination of SE and TE (3:1) has a better effect on regulating energy metabolism and inhibiting chronic inflammation.

5.
Sensors (Basel) ; 23(18)2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37766011

ABSTRACT

The foundation of intelligent collaborative control of a shearer, scraper conveyor, and hydraulic support (three-machines) is to achieve the precise perception of the status of the three-machines and the full integration of information between the equipment. In order to solve the problems of information isolation and non-flow, independence between equipment, and weak cooperation of three-machines due to an insufficient fusion of perception data, a fusion method of the equipment's state perception system on the intelligent working surface was proposed. Firstly, an intelligent perception system for the state of the three-machines in the working face was established based on fiber optic sensing technology and inertial navigation technology. Then, the datum coordinate system is created on the working surface to uniformly describe the status of the three-machines and the spatial position relationship between the three-machines is established using a scraper conveyor as a bridge so that the three-machines become a mutually restricted and collaborative equipment system. Finally, an indoor test was carried out to verify the relational model of the spatial position of the three-machines. The results indicate that the intelligent working face three-machines perception system based on fiber optic sensing technology and inertial navigation technology can achieve the fusion of monitoring data and unified expression of equipment status. The research results provide an important reference for building an intelligent perception, intelligent decision-making, and automatic execution system for coal mines.

6.
Biochem Biophys Res Commun ; 671: 270-277, 2023 09 03.
Article in English | MEDLINE | ID: mdl-37311264

ABSTRACT

Long noncoding RNA (lncRNA) transcripts are longer than 200 nt and are not translated into proteins. LncRNAs function in a wide variety of processes in plants and animals, but, perhaps because of their lower expression and conservation levels, plant lncRNAs had attracted less attention than protein-coding mRNAs. Now, recent studies have made remarkable progress in identifying lncRNAs and understanding their functions. In this review, we discuss a number of lncRNAs that have important functions in growth, development, reproduction, responses to abiotic stresses, and regulation of disease and insect resistance in plants. Additionally, we describe the known mechanisms of action of plant lncRNAs according to their origins within the genome. This review thus provides a guide for identifying and functionally characterizing new lncRNAs in plants.


Subject(s)
RNA, Long Noncoding , Animals , RNA, Long Noncoding/metabolism , Plants/genetics , Plants/metabolism , Stress, Physiological/genetics , Genome , Gene Expression Regulation, Plant , RNA, Plant/genetics , RNA, Plant/metabolism
7.
Food Sci Nutr ; 11(5): 2356-2371, 2023 May.
Article in English | MEDLINE | ID: mdl-37181308

ABSTRACT

Herein, we explored the effects of Poria cocos extract, protein powder mixture, and their combined intervention on weight loss in high-fat diet (HFD)-induced obese mice. Male C57BL/6J mice were selected and fed a HFD for 8 weeks; obese mice that were successfully modeled were divided into modeling and five intervention groups, and given the corresponding treatment for 10 weeks. Body weight, fat, and muscle tissue, blood glucose, lipids, inflammatory factors, and other glucose and lipid metabolism-related indicators were measured to evaluate the effect of P. cocos and protein powder intervention on weight loss in obese mice. The body weight of the intervention group was reduced compared with the HFD group. Fat content of mice in F3PM group decreased significantly (p < .05). Levels of blood glucose, lipids, adiponectin, leptin, and inflammatory factors, including interleukin-1 ß and tumor necrosis factor- α showed improvement. Lipoprotein lipase (lower about 2.97 pg/ml, vs. HFD mice 10.65 mmoL/ml) and sterol regulatory element-binding transcription factor (lower about 1413.63 pg/ml, vs. HFD mice 3915.33 pg/ml) levels in liver tissue were decreased. The respiratory exchange rate (RER) of mice in the HFD and subject intervention groups had no circadian rhythm and was maintained at approximately 0.80. The protein powder mixture (PM) group had the lowest RER (p < .05), the P. cocos extract (FL) and F1PM groups had similar RER to the HFD group (p < .05), and the F2PM group had a higher RER than the HFD group (p < .05). And food intake and energy metabolism returned to circadian rhythm, with an increase in the dose of P. cocos extract, the feeding rhythms of F1PM, F2PM, and F3PM were closer to that of the normal diet (ND) group. Feeding intervention with P. cocos and protein powder improved fat distribution, glucolipid metabolism, and energy metabolism, with the combination of F3PM showing more diverse benefits.

8.
Nutrients ; 15(8)2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37111231

ABSTRACT

Dairy foods are crucial for adequate calcium intake in young children, but scarce data are available on the effects of formula milk on bone acquisition. This cluster-randomized controlled trial investigated the effects of the supplementation of formula milk on bone health in rural children accustomed to a low-calcium diet between September 2021 and September 2022. We recruited 196 healthy children aged 4-6 years from two kindergartens in Huining County, Northwest China. A class-based randomization was used to assign them to receive 60 g of formula milk powder containing 720 mg calcium and 4.5 µg vitamin D or 20-30 g of bread per day for 12 months, respectively. Bone mineral density (BMD) and bone mineral content (BMC) at the left forearm and calcaneus, bone biomarkers, bone-related hormones/growth factors, and body measures were determined at baseline, 6, and 12 months. A total of 174 children completed the trial and were included in the analysis. Compared with the control group, formula milk intervention showed significant extra increments in BMD (3.77% and 6.66%) and BMC (4.55% and 5.76%) at the left forearm at 6th and 12th months post-intervention (all p < 0.001), respectively. Similar trends were observed in BMD (2.83%) and BMC (2.38%) in the left calcaneus at 6 months (p < 0.05). The milk intervention (vs. control) also showed significant changes in the serum concentrations of osteocalcin level (-7.59%, p = 0.012), 25-hydroxy-vitamin-D (+5.54%, p = 0.001), parathyroid hormone concentration (-15.22%, p = 0.003), and insulin-like growth factor 1 (+8.36%, p = 0.014). The percentage increases in height were 0.34%, 0.45%, and 0.42% higher in the milk group than in the control group after 3-, 6-, and 9-month intervention, respectively (p < 0.05). In summary, formula milk supplementation enhances bone acquisition at the left forearm in young Chinese children.


Subject(s)
Calcium , Milk , Humans , Child , Child, Preschool , Animals , Calcium/pharmacology , East Asian People , Bone and Bones , Calcium, Dietary/pharmacology , Bone Density , Vitamin D/pharmacology , Dietary Supplements
9.
J Colloid Interface Sci ; 644: 73-80, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37094474

ABSTRACT

Mineral-solution interface is of great importance in many soil and geochemical processes as well as industrial applications. Most relevant studies were based on saturated condition and given the corresponding theory, model, and mechanism. However, soils are usually in the non-saturation with different capillary suction. Our study presents substantially different scenery for ions interacting with mineral surface under unsaturated condition using molecular dynamics method. Under partially hydrated state, both cations (Ca2+) and anions (Cl-) can be adsorbed as outer-sphere complexes at the montmorillonite surface, and the number significantly increased with the increase of unsaturated degree. Ions preferred to interact with clay mineral instead of water molecules under unsaturated state, and the mobility of both cations and anions substantially decreased with the increase of capillary suction as reflected by the diffusion coefficient analysis. Potential of mean force calculations further clearly revealed that the adsorption strength of both Ca2+ and Cl- increased with capillary suction. Such an increase was more obvious for Cl- compared to Ca2+, despite the adsorption strength of Cl- was much weaker than Ca2+ at a certain capillary suction. Therefore, it is the capillary suction under unsaturated condition that drives the strong specific affinity of ions at the surface of clay mineral, which was tightly related to the steric effect of confined water film, the destruction of EDL structure, and the cation-anion pair interaction. This suggests that our common understanding of mineral-solution interaction should be largely improved.

10.
Nutr Metab (Lond) ; 20(1): 16, 2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36944956

ABSTRACT

BACKGROUND: Studies have shown that probiotics have an effect on reducing body fat on a strain-specific and dose-response bases. The purpose of this study was to evaluate the effect of a novel probiotic strain Lacticaseibacillus paracasei K56 on body fat and metabolic biomarkers in adult individuals with obesity. METHODS: 74 adult subjects with obesity (body mass index ≥ 30 kg/m2, or percent body fat > 25% for men, percent body fat > 30% for women) were randomized into 5 groups and supplemented with different doses of K56 (groups VL_K56, L_K56, H_K56, and VH_K56: K56 capsules, 2 × 107 CFU/day, 2 × 109 CFU/day, 2 × 1010 CFU/day, 2 × 1011 CFU/day, respectively) or placebo (group Pla: placebo capsule) for 60 days. Subjects were advised to maintain their original dietary intake and physical activity. Anthropometric measurements, body composition assessment, and metabolic parameters were measured at baseline and after 60 days of intervention. RESULTS: The results showed that the L_K56 group had significant decreases in percent body fat (p = 0.004), visceral fat area (p = 0.0007), total body fat mass (p = 0.018), trunk body fat mass (p = 0.003), waist circumference (p = 0.003), glycosylated hemoglobin(p = 0.002) at the end of the study compared with baseline. There were non-significant reductions in Body weight and BMI in the L_K56, H_K56, VL_K56 groups, whereas increases were observed in the placebo and VH_K56 groups compared with baseline values. In addition, K56 supplementation modulated gut microbiota characteristics and diversity indices in the L-K56 group. However, mean changes in body fat mass, visceral fat area, weight, body mass index, waist circumference and hip circumference were not significantly different between groups. CONCLUSIONS: The results suggest that supplementation with different doses of Lacticaseibacillus paracasei K56 has certain effect on reducing body fat and glycosylated hemoglobin, especially at a dose of 109 CFU/day. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT04980599.

11.
Phys Chem Chem Phys ; 25(11): 7951-7964, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36866749

ABSTRACT

Soluble inorganic carbon is an important component of a soil carbon pool, and its fate in soils, sediments, and underground water environments has great effects on many physiochemical and geological processes. However, the dynamical processes, behaviors and mechanism of their adsorption by soil active components, such as quartz, are still unclear. The aim of this work is to systematically address the anchoring mechanism of CO32- and HCO3- on a quartz surface at different pH values. Three pH values (pH 7.5, pH 9.5 and pH 11) and three carbonate salt concentrations (0.07, 0.14 and 0.28 M) are considered, and molecular dynamics methods are used. The results indicate that the pH value regulates the adsorption behavior of CO32- and HCO3- on the quartz surface by affecting the CO32-/HCO3- ratio and the surface charge of quartz. In general, both HCO3- and CO32- ions were able to adsorb on the quartz surface and the adsorption capacity of CO32- is higher than that of HCO3-. HCO3- ions tended to uniformly distribute in an aqueous solution and contact the quartz surface in the form of single molecules instead of clusters. In contrast, CO32- ions were mainly adsorbed as clusters which became larger as the concentration increased. Na+ ions were essential for the adsorption of HCO3- and CO32-, because some of the Na+ and CO32- ions spontaneously associated together to form clusters, promoting the clusters to be adsorbed on the quartz surface through cationic bridges. The local structures and dynamics trajectory of CO32- and HCO3- showed that the anchoring mechanism of carbonate solvates on quartz involved H-bonds and cationic bridges, which changed in relation to the concentration and pH values. However, the HCO3- ions mainly adsorbed on the quartz surface via H-bonds while the CO32- ions tended to be adsorbed through cationic bridges. These results may help in understanding the geochemical behavior of soil inorganic carbon and further the processes of the Earth's carbon chemical cycle.

12.
Sensors (Basel) ; 23(3)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36772123

ABSTRACT

The ubiquity of smartphones equipped with multiple sensors has provided the possibility of automatically recognizing of human activity, which can benefit intelligent applications such as smart homes, health monitoring, and aging care. However, there are two major barriers to deploying an activity recognition model in real-world scenarios. Firstly, deep learning models for activity recognition use a large amount of sensor data, which are privacy-sensitive and hence cannot be shared or uploaded to a centralized server. Secondly, divergence in the distribution of sensory data exists among multiple individuals due to their diverse behavioral patterns and lifestyles, which contributes to difficulty in recognizing activity for large-scale users or 'cold-starts' for new users. To address these problems, we propose DivAR, a diversity-aware activity recognition framework based on a federated Meta-Learning architecture, which can extract general sensory features shared among individuals by a centralized embedding network and individual-specific features by attention module in each decentralized network. Specifically, we first classify individuals into multiple clusters according to their behavioral patterns and social factors. We then apply meta-learning in the architecture of federated learning, where a centralized meta-model learns common feature representations that can be transferred across all clusters of individuals, and multiple decentralized cluster-specific models are utilized to learn cluster-specific features. For each cluster-specific model, a CNN-based attention module learns cluster-specific features from the global model. In this way, by training with sensory data locally, privacy-sensitive information existing in sensory data can be preserved. To evaluate the model, we conduct two data collection experiments by collecting sensor readings from naturally used smartphones annotated with activity information in the real-life environment and constructing two multi-individual heterogeneous datasets. In addition, social characteristics including personality, mental health state, and behavior patterns are surveyed using questionnaires. Finally, extensive empirical results demonstrate that the proposed diversity-aware activity recognition model has a relatively better generalization ability and achieves competitive performance on multi-individual activity recognition tasks.


Subject(s)
Awareness , Personality , Humans , Data Collection , Human Activities , Attention
13.
J Orthop Surg Res ; 18(1): 23, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36627651

ABSTRACT

OBJECTIVE: Fluorine-18 fluorodeoxyglucose positron emission tomography (18F-FDG PET) and PET/CT have been suggested for confirming or excluding musculoskeletal infection but the diagnostic value of this tool for pyogenic spondylitis remains to be confirmed. This meta-analysis was performed to verify the accuracy of 18F-FDG PET and PET/CT in diagnosing suspected pyogenic spondylitis by performing a systematic review and meta-analysis. METHODS: We conducted a comprehensive literature search of PubMed, Embase and Cochrane Library to retrieve diagnostic accuracy studies in which suspected pyogenic spondylitis was assessed with 18F-FDG PET or PET/CT. The pooled sensitivity, specificity, likelihood ratios, diagnostic odds ratio (DOR), summarized receiver operating characteristic curve (sROC) and the area under the sROC (AUC) were calculated by using Stata software. RESULTS: A total of 18 eligible studies (660 patients) with suspected pyogenic spondylitis were included in the quantitative analysis. 18F-FDG PET and PET/CT illustrated relatively high sensitivity (0.91, 95% CI: 0.84-0.95) and specificity (0.90, 95% CI: 0.79-0.95) for the diagnosis of pyogenic spondylitis. The pooled DOR and AUC were 86.00 (95% CI, 31.00-240.00) and 0.96 (95% CI, 0.94-0.97), respectively. For diagnosing pyogenic spondylitis without previous spine surgery, the pooled sensitivity, specificity, DOR and AUC were 0.93 (95% CI, 0.85-0.97), 0.91 (95% CI, 0.77-0.97), 136 (95% CI, 35-530) and 0.97 (95% CI, 0.95-0.98), respectively. For diagnosing postoperative pyogenic spondylitis, the pooled sensitivity, specificity, DOR and AUC were 0.85 (95% CI, 0.71 to 0.93), 0.87 (95% CI, 0.66 to 0.96), 38 (95% CI, 9 to 167) and 0.92 (95% CI, 0.89 to 0.94), respectively. CONCLUSION: 18F-FDG PET and PET/CT presented satisfactory accuracy for diagnosing pyogenic spondylitis. The diagnostic effect of this nuclear imaging method for pyogenic spondylitis without previous spine surgery seems to be better than that for the postoperative ones. However, whether 18F-FDG PET and PET/CT could become a routine in patients with suspected pyogenic spondylitis remains to be confirmed. LEVEL OF EVIDENCE: Level I evidence, a summary of meta-analysis.


Subject(s)
Positron Emission Tomography Computed Tomography , Spondylitis , Humans , Positron Emission Tomography Computed Tomography/methods , Fluorodeoxyglucose F18 , Radiopharmaceuticals , Sensitivity and Specificity , Positron-Emission Tomography/methods , Spondylitis/diagnostic imaging
14.
Food Funct ; 14(2): 1099-1112, 2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36594489

ABSTRACT

Pulmonary inflammation as one of the extraintestinal manifestations of ulcerative colitis (UC) has attracted extensive attention, and its pathogenesis is closely related to gut dysbiosis. Bifidobacterium animalis subsp. lactis BL-99 (BL-99) can alleviate osteoporosis caused by UC, but less research has been done on other extraintestinal manifestations (EIM) caused by UC. This study aimed to explore the role and potential mechanisms of BL-99 on DSS-induced pulmonary complications in colitis mice. The results showed that BL-99 decreased weight loss, disease activity index score, colonic pathology score, and the production of pro-inflammatory cytokines (e.g., TNF-α, IL-1ß, and IL-6) in colitis mice. BL-99 also alleviated DSS-induced lung pathological damage by suppressing the infiltration of pro-inflammatory cytokines, inflammatory monocytes, and macrophages. Furthermore, 16S rRNA gene sequencing showed lower abundances of several potentially pathogenic bacteria (e.g., Burkholderia, Shigella, and Clostridium perfringens) and enrichment in specific beneficial bacteria (e.g., Adlercreutzia and Bifidobacterium animalis) in colitis mice with BL-99 treatment. Targeted metabolomics suggested that BL-99 intervention promoted the production of intestinal acetate and butyrate. Finally, we observed that the pulmonary expression of primary acetate and butyrate receptors, including FFAR2, FFAR3, and, GPR109a, was up-regulated in BL-99-treated mice, which negatively correlated with inflammatory monocytes and macrophages. Altogether, these results suggest that BL-99 might be utilized as a probiotic intervention to prevent the incidence of colitis-related lung injury owing to its ability to shape the intestinal microbiota and suppress inflammation.


Subject(s)
Bifidobacterium animalis , Colitis, Ulcerative , Colitis , Lung Injury , Animals , Mice , Bifidobacterium animalis/metabolism , Butyrates/metabolism , Colitis/chemically induced , Colitis, Ulcerative/metabolism , Colon/metabolism , Cytokines/metabolism , Dextran Sulfate/toxicity , Disease Models, Animal , Fatty Acids, Volatile/metabolism , Lung Injury/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Monocytes/metabolism , RNA, Ribosomal, 16S/metabolism
15.
J Food Sci ; 88(3): 1197-1213, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36717373

ABSTRACT

Coix seed extract (CSE) and probiotics have been reported to regulate glycolipid metabolism through different modes of action. We tested the effects of CSE, Lactobacillus paracasei K56, and their combination to determine whether they have synergistic effects on glycolipid metabolism of obese mice. We fed male C57BL/6J mice with high-fat diet for 8 weeks to establish an obesity model. The obesity mice were selected and divided into five groups: the model control group and four intervention groups. After 10 weeks of continuous gavage intervention, the mice in the intervention groups exhibited lower body weight (lower about 2.31-4.41 g, vs. HFD 42.25 g, p < 0.01), and epididymal (lower about 0.58-0.92 g, vs. HFD 2.50 g, p < 0.01) and perirenal fat content (lower about 0.24-0.42 g, vs. HFD 0.88 g, p < 0.05); decreased fasting blood glucose, total cholesterol, triglycerides, and VLDL; and increased HLDL, respiratory exchange ratio, energy expenditure, and amount of exercise performed. K56 + CSE-combined intervention groups were more effective in lowering blood glucose, IL-1ß, and TNF-α levels than the CSE and K56 alone interventions. The content of fatty acid synthase and SREBP-1c protein in liver tissue was lower. The combination has synergistic effects on weight control, fat reduction, and blood glucose regulation by improving the chronic inflammatory state and reducing the content of lipid synthesis-related enzymes of obese mice, which can hinder chronic disease progression. PRACTICAL APPLICATION: Coix seed extract can be used in obese people to regulate abnormal glucose and lipid metabolism and delay the development of chronic diseases.


Subject(s)
Coix , Lacticaseibacillus paracasei , Mice , Male , Animals , Mice, Obese , Blood Glucose/metabolism , Mice, Inbred C57BL , Obesity/metabolism , Lipid Metabolism , Liver/metabolism , Diet, High-Fat/adverse effects , Glycolipids
16.
Probiotics Antimicrob Proteins ; 15(4): 844-855, 2023 Aug.
Article in English | MEDLINE | ID: mdl-35067837

ABSTRACT

This study investigated the effects of Lacticaseibacillus paracasei K56 (L. paracasei K56) on body weight, body composition, and glycolipid metabolism in mice with high-fat diet-induced obesity and explored the underlying mechanisms. Male C57BL/6J mice were fed a high-fat diet for 8 weeks to induce obesity; then, the obese mice were gavaged with or without L. paracasei K56 for 10 weeks. The body weight, body composition, fat mass, blood lipid, blood glucose, and hormones of the mice were evaluated. Moreover, the fatty acid synthesis (FAS) and peroxisome proliferator-activated receptor γ (PPAR-γ) expressions in the liver were detected via Western blotting. 16S rRNA gene sequencing was adopted to determine the gut microbiota alterations. The high-fat diet successfully induced obesity, as indicated by the abnormal increase in body weight, visceral fat, fat mass, blood lipids, fasting blood glucose, and insulin-resistance. Moreover, the FAS expression in the liver was significantly increased, whereas the PPAR-γ expression was significantly decreased. The relative abundance of Proteobacteria, Actinobacteria and Patescibacteria was also significantly increased, and that of Verrucomicrobia was significantly decreased. However, these indicators of mice supplemented with L. paracasei K56 were significantly opposite to those of obese mice. The Ruminococcuaceae_UCG-013, Akkermansia, Prevotellaceae_UCG-001, Muribaculum, and Lachnospiraceae_NK4A136 groups were significantly negatively correlated with body weight, blood lipids, and blood glucose-related indicators, whereas Coriobacteriaceae_UCG-002, Enterorhabdus, Raoultibacter, Acinetobacter, Romboutsia, Leuconostoc, and Erysipelatoclostridium were significantly positively correlated with these indicators. L. paracasei K56 might be a promising probiotic strain that could effectively slow down the body weight gain, reduce fat accumulation, alleviate insulin-resistance, and restore pancreatic ß-cell function in obese mice by regulating the gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Insulin Resistance , Insulins , Lacticaseibacillus paracasei , Male , Mice , Animals , Lacticaseibacillus , Blood Glucose/metabolism , Diet, High-Fat/adverse effects , Mice, Obese , RNA, Ribosomal, 16S , Peroxisome Proliferator-Activated Receptors/pharmacology , Mice, Inbred C57BL , Obesity , Body Weight , Lipids , Bacteria , Insulins/pharmacology
17.
Food Chem ; 409: 135327, 2023 May 30.
Article in English | MEDLINE | ID: mdl-36586254

ABSTRACT

The effects of soluble dietary fibres (SDFs) on α-glucosidase inhibition of EGCG were studied. Three arabinoxylans and polygalacturonic acid (PGA) significantly decreased inhibitory activity of EGCG against α-glucosidase, while two ß-glucans hardly affected the inhibition. Although arabinoxylans and PGA weakened the competitive inhibition character of EGCG, they maintained the fluorescence quenching effect of EGCG. Then, arabinoxylans and PGA significantly decreased the particle size and turbidity of EGCG-enzyme complex. These results suggest that there formed SDFs-EGCG-enzyme ternary complexes. The stronger decreasing-effects of arabinoxylans and PGA on α-glucosidase inhibition of EGCG than ß-glucans resulted from the stronger non-covalent interactions of arabinoxylans and PGA with EGCG. This is considered to arise from the short-branches of arabinoxylans that provided more opportunity for capturing EGCG, and from the strong polarity of PGA carboxyl that promoted hydrogen bondings with EGCG. Conclusively, SDFs should be considered as an impact factor when evaluating α-glucosidase inhibition of dietary polyphenols.


Subject(s)
Catechin , alpha-Glucosidases , alpha-Glucosidases/metabolism , Polyphenols/chemistry , Catechin/chemistry , Dietary Fiber
18.
Front Nutr ; 9: 939423, 2022.
Article in English | MEDLINE | ID: mdl-35923203

ABSTRACT

Coix seed extract (CSE) and probiotics have been reported to regulate glycolipid metabolism via different modes of action. We tested the effects of CSE, Bifidobacterium BPL1, and their combination to determine their effects on glycolipid metabolism in obese mice. Male C57BL/6J mice were fed a high-fat diet for 8 weeks to establish an obesity model. Obese mice were selected and divided into four groups: the model control group and three intervention groups. After 10 weeks of continuous gavage intervention, the mice in the intervention groups exhibited lower body weight (lower about 2.31 g, vs. HFD mice 42.23 g) and epididymal (lower about 0.37 g, vs. HFD mice 2.5 g) and perirenal fat content (lower about 0.47 g, vs. HFD mice 0.884 g); decreased fasting blood glucose, total cholesterol, triglycerides, and VLDL; and increased HLDL, respiratory exchange ratio, energy expenditure, and amount of exercise performed. CSE, BPL1 and their combination can effectively control the weight gain in obese mice, reduce fat content, and regulate blood lipids and abnormal blood sugar. These results may be related to reduce the chronic inflammatory states, improve energy metabolism, exercise, relieve insulin sensitivity, and reduce lipid synthesis via the intervention of CSE, BPL1 and their combination. Compared with the single use of CSE alone, the combination of CSE + BPL1 can better exert the regulation function of intestinal flora, and change in the abundance of bacteria that could improve the level of inflammatory factors, such as increasing Bifidobacterium, reducing Lactococcus. Compared with the use of BPL1 alone, the combination of CSE and BPL1 can better regulate pancreatic islet and improve blood sugar. CSE may act directly on body tissues to exert anti-inflammatory effects. BPL1 and CSE + BPL1 may improve the structure and function of the intestinal flora, and reduce tissue inflammation.

19.
Front Nutr ; 9: 854725, 2022.
Article in English | MEDLINE | ID: mdl-35495933

ABSTRACT

Objective: Given that the prevalence rate of type 2 diabetes mellitus (T2DM) continues to increase, it is important to find an effective method to prevent or treat this disease. Previous studies have shown that dietary intervention with a slowly digestible carbohydrate (SDC) diet can improve T2DM with almost no side effects. However, the underlying mechanisms of SDC protect against T2DM remains to be elucidated. Methods: The T2DM mice model was established with a high-fat diet and streptozocin injection. Then, SDC was administered for 6 weeks. Bodyweight, food intake, organ indices, fasting blood glucose (FBG), oral glucose tolerance test (OGTT), homeostasis model assessment for insulin resistance (HOMA-IR), and other biochemical parameters were measured. Histopathological and lipid accumulation analyses were performed, and the glucose metabolism-related gene expressions in the liver and skeletal muscle were determined. Lastly, colonic microbiota was also analyzed. Results: SDC intervention alleviated the weight loss in the pancreas, lowered blood glucose and glycosylated hemoglobin levels, and improved glucose tolerance and HOMA-IR. SDC intervention improved serum lipid profile, adipocytokines levels, and lowered the lipid accumulation in the liver, subcutaneous adipose tissue, and epididymal visceral adipose tissue. In addition, SDC intervention increased the expression levels of IRS-2 and GLUT-2 in liver tissues and elevated GLUT-4 expression levels in skeletal muscle tissues. Notably, SDC intervention decreased the Bacteroidetes/Firmicutes ratio, increased Desulfovibrio and Lachnospiraceae genus levels, and inhibited the relative abundance of potentially pathogenic bacteria. Conclusions: SDC intervention can improve hyperglycemia and hyperlipidemia status in diabetic mice, suggesting that this intervention might be beneficial for T2DM.

20.
Food Funct ; 13(3): 1482-1494, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35060590

ABSTRACT

Patients diagnosed with inflammatory bowel disease or related conditions also frequently suffer from osteoporosis as a consequence of changes in the intestinal microenvironment and consequent dysbiosis. We hypothesized that anti-inflammatory probiotic treatment would be sufficient to alleviate intestinal inflammation and thereby prevent the development of osteoporosis. To that end, the ability of Bifidobacterium lactis BL-99 administration to protect against bone loss in an experimental model of dextran sodium sulfate-induced ulcerative colitis (UC) was analyzed, and the underlying molecular mechanisms were interrogated in detail. The results of these analyses revealed that BL-99 administration suppressed colitis-associated weight loss (P < 0.05), disease activity index scores, and the production of proinflammatory cytokines (TNF-α, IL-1ß, IL-6, and IL-17) (P < 0.05). Colon tissue pathological sections similarly revealed BL-99-mediated reductions in tissue injury severity. Micro-computed tomography (Micro-CT) analyses further exhibited significant improvements in percent bone volume (BV/TV) as well as trabecular number and thickness in BL-99-treated animals (P < 0.05). Such probiotic supplementation also resulted in pronounced changes in the composition of the gut microbiota. Moreover, BL-99 intervention markedly increased the expression of intestinal barrier-related proteins (Claudin-1, MUC2, ZO-1, and Occludin). Together, these results suggest that BL-99 can be utilized as a beneficial probiotic preparation to prevent the incidence of osteoporosis in UC patients owing to its ability to shape the intestinal microflora and to suppress inflammatory cytokine production.


Subject(s)
Bifidobacterium , Colitis, Ulcerative/prevention & control , Gastrointestinal Microbiome/drug effects , Osteoporosis/complications , Probiotics/pharmacology , Animals , Colitis, Ulcerative/complications , Dextran Sulfate , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL , Specific Pathogen-Free Organisms
SELECTION OF CITATIONS
SEARCH DETAIL
...