Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 349: 123872, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38604309

ABSTRACT

Recently, attention has been drawn to the adverse outcomes of N-(1,3-Dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6PPDQ) on human health, but its cardiac toxicity has been relatively understudied. This work aims to investigate the effects of 6PPDQ on differentiated H9c2 cardiomyocytes. Our findings demonstrated that exposure to 6PPDQ altered cellular morphology and disrupted the expression of cardiac-specific markers. Significantly, 6PPDQ exposure led to cardiomyocyte senescence, characterized by elevated ß-Galactosidase activity, upregulation of cell cycle inhibitor, induction of DNA double-strand breaks, and remodeling of Lamin B1. Furthermore, 6PPDQ hindered autophagy flux by promoting the formation of autophagosomes while inhibiting the degradation of autolysosomes. Remarkably, restoration of autophagic flux using rapamycin counteracted 6PPDQ-induced cardiomyocyte senescence. Additionally, our study revealed that 6PPDQ significantly increased the ROS production. However, ROS scavenger effectively reduced the blockage of autophagic flux and cardiomyocyte senescence caused by 6PPDQ. Furthermore, we discovered that 6PPDQ activated the Aryl hydrocarbon receptor (AhR) signaling pathway. AhR antagonist was found to reverse the blockage of autophagy and alleviate cardiac senescence, while also reducing ROS levels in 6PPDQ-treated group. In conclusion, our research unveils that exposure to 6PPDQ induces ROS overproduction through AhR activation, leading to disruption of autophagy flux and ultimately contributing to cardiomyocyte senescence.


Subject(s)
Autophagy , Cellular Senescence , Myocytes, Cardiac , Reactive Oxygen Species , Receptors, Aryl Hydrocarbon , Autophagy/drug effects , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Reactive Oxygen Species/metabolism , Cellular Senescence/drug effects , Animals , Phenylenediamines/pharmacology , Phenylenediamines/toxicity , Signal Transduction/drug effects , Rats , Cell Line , Quinones/pharmacology
2.
Angew Chem Int Ed Engl ; 56(20): 5454-5459, 2017 05 08.
Article in English | MEDLINE | ID: mdl-28345296

ABSTRACT

The voltage of carbon-based aqueous supercapacitors is limited by the water splitting reaction occurring in one electrode, generally resulting in the promising but unused potential range of the other electrode. Exploiting this unused potential range provides the possibility for further boosting their energy density. An efficient surface charge control strategy was developed to remarkably enhance the energy density of multiscale porous carbon (MSPC) based aqueous symmetric supercapacitors (SSCs) by controllably tuning the operating potential range of MSPC electrodes. The operating voltage of the SSCs with neutral electrolyte was significantly expanded from 1.4 V to 1.8 V after simple adjustment, enabling the energy density of the optimized SSCs reached twice as much as the original. Such a facile strategy was also demonstrated for the aqueous SSCs with acidic and alkaline electrolytes, and is believed to bring insight in the design of aqueous supercapacitors.

3.
Chem Commun (Camb) ; 53(28): 3929-3932, 2017 Apr 04.
Article in English | MEDLINE | ID: mdl-28303265

ABSTRACT

Free-standing porous MoO2 nanowires with extraordinary capacitive performance are developed as high-performance electrodes for electrochemical capacitors. The as-obtained MoO2 electrode exhibits a remarkable capacitance of 424.4 mF cm-2 with excellent electrochemical durability (no capacitance decay after 10 000 cycles at various scan rates).

4.
ACS Appl Mater Interfaces ; 5(23): 12561-70, 2013 Dec 11.
Article in English | MEDLINE | ID: mdl-24274735

ABSTRACT

Mesocrystals are of great importance owing to their novel hierarchical microstructures and potential applications. In the present work, a simple additive-free method has been developed for the controllable synthesis of manganese monoxide (MnO) mesocrystals, in which cheap manganese acetate (Mn(Ac)2) and ethanol were used as raw materials without involving any other expensive additives such as surfactants, polyelectrolyte, or polymers. The particle size of the resulting MnO mesocrystals is tunable in the range 400-1500 nm by simply altering the concentration of Mn(Ac)2 in ethanol. The percentage yield of the octahedral MnO mesocrystals is about 38 wt % with respect to the starting Mn(Ac)2. The selective adsorption of oligomers, which was resulted from the polymerization of ethanol, acted as an important role for the mesocrystal formation. A mechanism involving the oriented aggregation of MnO nanoparticle subunits and the subsequent ripening process was proposed. Moreover, for the first time, the as-synthesized MnO mesocrystals were employed as a novel template to fabricate functional materials with an octahedral morphology including MnO@C core/shells, carbon, and graphitic hollow octahedrons. This method shows the importance of mesocrystals not only for the field of material research but also for the application in functional materials synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...