Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nanotechnology ; 35(24)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38387088

ABSTRACT

The recombination of photoexcited electron-hole pairs greatly limits the degradation performance of photocatalysts. Ultrasonic cavitation and internal electric field induced by the piezoelectric effect are helpful for the separation of electron-hole pairs and degradation efficiency. The activated foam carbon (AFC) owing to its high surface area is often used as the substrate to grow catalysts to provide more reactive active sites. In this work, CuO@BaTiO3(CuO@BTO) heterostructure is prepared by hydrothermal method on the surface of AFC to investigate the ultrasonic piezoelectric catalysis effect. X-ray diffraction (XRD), Raman spectroscopy, energy dispersive x-ray spectroscopy (EDS) and scanning electron microscopy (SEM) were used to analyze the structure and morphology of CuO-BTO/AFC composite. It is found that the CuO-BTO/AFC composite exhibits excellent piezo-catalytic performance for the degradation of organics promoted by ultrasonic vibration. The CuO-BTO/AFC composite can decompose methyl orange and methylene blue with degradation efficiency as high as 93.9% and 97.6% within 25 min, respectively. The mechanism of piezoelectricity enhanced ultrasound supported catalysis effect of system CuO-BTO/AFC is discussed. The formed heterojunction structure between BTO and CuO promotes the separation of positive and negative charges caused by the piezoelectric effect.

2.
Mater Horiz ; 11(2): 468-479, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37965678

ABSTRACT

To cope with sophisticated application scenarios, carbon materials can provide opportunities for integrating multi-functionalities into superior electromagnetic interference (EMI) shielding properties. Nevertheless, carbon materials usually possess high electrical conductivity, which allows them to counteract electromagnetic waves by reflection. Moreover, the identification of factors that dominate the shielding mechanisms has typically been result-oriented, leading to a reliance on a trial-and-error approach for the development of shielding materials. Thus, it is crucial to identify the dominant factors for EMI shielding and elucidate the mechanism underlying the coordination of the balance between reflection and absorption in carbon materials. In this study, we developed a promising and viable approach to create Co@CNTs embedded in carbonized wood (CW) via chemical vapor deposition, producing Co@CNTs/CW foams. The CNTs, densely grown on the CW surface, tightly encapsulated the Co nanoparticles within them. By manipulating the Co content, the defect density and CNT length varied within the Co@CNTs. Through first-principles calculations, these variations substantially influenced the work function, charge density, and dipole moment of the Co@CNTs. Thus, defect-induced and interfacial polarizations were improved, inducing a transformation of the shielding mechanism from reflection to absorption. Regarding the Co@CNTs/CW foams, while high conductivity was essential for achieving satisfactory shielding performance, the enhanced polarization loss dominated the contribution of absorption to the overall shielding effectiveness. Taking advantage of the enhanced polarizations, the Co@CNTs/CW foams exhibited an impressive shielding effectiveness of 42.0 dB, along with an absorptivity of 0.64, which were instrumental in effectively minimizing secondary reflections. Remarkably, these as-prepared foams possessed outstanding hydrophobicity and Joule heating features with a water contact angle of 138° and a saturation temperature of 85.5 °C (2.5 V). Through the stimulation of voltage-driven Joule heating, the absorptivity of Co@CNTs/CW foams can be significantly enhanced to a range of 0.61 to 0.73, irrespective of the Co content. This research would provide a new avenue for designing carbon materials with an absorption-dominated mechanism integrated into EMI shielding performance.

3.
Phys Chem Chem Phys ; 26(2): 1156-1165, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38099437

ABSTRACT

Hollow MoS2 cubes and spheres were synthesized by a one-step hydrothermal method with the hard template method. The structure and morphology were characterized, and their electrochemical properties were studied. It is concluded that the specific capacitance of the hollow MoS2 cubes (335.7 F g-1) is higher than that of the hollow MoS2 spheres (256.1 F g-1). The symmetrical supercapacitors were assembled, and the results indicate that the specific capacitance of the device composed of hollow MoS2 spheres (32.9 F g-1) is slightly lower than that of the hollow MoS2 cube (37.4 F g-1) device. Furthermore, the symmetrical supercapacitor (MoS2-cube//MoS2-cube) provides a maximum energy density of 4.93 W h kg-1, which is greater than that of the symmetrical capacitor (MoS2-sphere//MoS2-sphere, 3.65 W h kg-1). This may indicate that hollow molybdenum disulfide cubes with substructures have more efficient charge transfer capabilities and better capacitance characteristics than hollow spheres. After 8000 cycles, the coulombic efficiency of the two symmetrical capacitors is close to 100%. The capacity retention of the MoS2 sphere device (95.2%) is slightly higher than that of the MoS2 cube device (90.1%). These results show that the pore structure, specific surface, and active site of MoS2 with different hollow structures have a greater impact on its electrochemical properties.

4.
Research (Wash D C) ; 6: 0243, 2023.
Article in English | MEDLINE | ID: mdl-37795336

ABSTRACT

Organic mechanophores have been widely adopted for polymer mechanotransduction. However, most examples of polymer mechanotransduction inevitably experience macromolecular chain rupture, and few of them mimic mussel's mechanochemical regeneration, a mechanically mediated process from functional units to functional materials in a controlled manner. In this paper, inorganic mechanoluminescent (ML) materials composed of CaZnOS-ZnS-SrZnOS: Mn2+ were used as a mechanotransducer since it features both piezoelectricity and mechanolunimescence. The utilization of ML materials in polymerization enables both mechanochemically controlled radical polymerization and the synthesis of ML polymer composites. This procedure features a mechanochemically controlled manner for the design and synthesis of diverse mechanoresponsive polymer composites.

5.
Angew Chem Int Ed Engl ; 62(37): e202309440, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37507344

ABSTRACT

Traditional mechanochemically controlled reversible-deactivation radical polymerization (RDRP) utilizes ultrasound or ball milling to regenerate activators, which induce side reactions because of the high-energy and high-frequency stimuli. Here, we propose a facile approach for tribochemically controlled atom transfer radical polymerization (tribo-ATRP) that relies on contact-electro-catalysis (CEC) between titanium oxide (TiO2 ) particles and CuBr2 /tris(2-pyridylmethylamine (TPMA), without any high-energy input. Under the friction induced by stirring, the TiO2 particles are electrified, continuously reducing CuBr2 /TPMA into CuBr/TPMA, thereby conversing alkyl halides into active radicals to start ATRP. In addition, the effect of friction on the reaction was elucidated by theoretical simulation. The results indicated that increasing the frequency could reduce the energy barrier for the electron transfer from TiO2 particles to CuBr2 /TPMA. In this study, the design of tribo-ATRP was successfully achieved, enabling CEC (ca. 10 Hz) access to a variety of polymers with predetermined molecular weights, low dispersity, and high chain-end fidelity.

7.
Front Cell Neurosci ; 16: 888152, 2022.
Article in English | MEDLINE | ID: mdl-35651759

ABSTRACT

The ability of human pluripotent stem cells (hPSCs) to specialize in neuroepithelial tissue makes them ideal candidates for use in the disease models of neural tube defects. In this study, we cultured hPSCs in suspension with modified neural induction method, and immunostaining was applied to detect important markers associated with cell fate and morphogenesis to verify the establishment of the neural tube model in vitro. We carried out the drug experiments to further investigate the toxicity of valproic acid (VPA) exposure and the potential protective effect of folic acid (FA). The results demonstrated that neural rosette undergoes cell fate speciation and lumen formation accompanied by a spatiotemporal shift in the expression patterns of cadherin, indicating the model was successfully established. The results showed that VPA caused morphogenesis inhibition of lumen formation by altering cytoskeletal function and cell polarization, which could be rescued by FA supplement.

8.
Mol Psychiatry ; 27(8): 3468-3478, 2022 08.
Article in English | MEDLINE | ID: mdl-35484243

ABSTRACT

N-methyl-D-aspartic acid type glutamate receptors (NMDARs) play critical roles in synaptic transmission and plasticity, the dysregulation of which leads to cognitive defects. Here, we identified a rare variant in the NMDAR subunit GluN2A (K879R) in a patient with intellectual disability. The K879R mutation enhanced receptor expression on the cell surface by disrupting a KKK motif that we demonstrated to be an endoplasmic reticulum retention signal. Expression of GluN2A_K879R in mouse hippocampal CA1 neurons enhanced the excitatory postsynaptic currents mediated by GluN2A-NMDAR but suppressed those mediated by GluN2B-NMDAR and the AMPA receptor. GluN2A_K879R knock-in mice showed similar defects in synaptic transmission and exhibited impaired learning and memory. Furthermore, both LTP and LTD were severely impaired in the KI mice, likely explaining their learning and memory defects. Therefore, our study reveals a new mechanism by which elevated synaptic GluN2A-NMDAR impairs long-term synaptic plasticity as well as learning and memory.


Subject(s)
Neuronal Plasticity , Receptors, N-Methyl-D-Aspartate , Animals , Mice , Hippocampus/metabolism , Learning , Long-Term Potentiation/physiology , Receptors, AMPA/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/metabolism
9.
J Clin Lab Anal ; 36(2): e24196, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34997978

ABSTRACT

BACKGROUND: Proline-rich transmembrane protein 2 (PRRT2) is a neuron-specific protein associated with seizures, dyskinesia, and intelligence deficit. Previous studies indicate that PRRT2 regulates neurotransmitter release from presynaptic membranes. However, PRRT2 can also bind AMPA-type glutamate receptors (AMPARs), but its postsynaptic functions remain unclear. METHODS AND RESULTS: Whole-exome sequencing used to diagnose a patient with mental retardation identified a nonsense mutation in the PRRT2 gene (c.649C>T; p.R217X). To understand the pathology of the mutant, we cloned mouse Prrt2 cDNA and inserted a premature stop mutation at Arg223, the corresponding site of Arg217 in human PRRT2. In mouse hippocampal tissues, Prrt2 interacted with GluA1/A2 AMPAR heteromers but not GluA2/A3s, via binding to GluA1. Additionally, Prrt2 suppressed GluA1 expression and localization on cell membranes of HEK 293T cells. However, when Prrt2 was overexpressed in individual hippocampal neurons using in utero electroporation, AMPAR-mediated synaptic transmission was unaffected. Deletion of Prrt2 with the CRIPR/Cas9 technique did not affect AMPAR-mediated synaptic transmission. Furthermore, deletion or overexpression of Prrt2 did not affect GluA1 expression and distribution in primary neuronal culture. CONCLUSIONS: The postsynaptic functions of Prrt2 demonstrate that Prrt2 specifically interacts with the AMPAR subunit GluA1 but does not regulate AMPAR-mediated synaptic transmission. Therefore, our study experimentally excluded a postsynaptic regulatory mechanism of Prrt2. The pathology of PRRT2 variants in humans likely originates from defects in neurotransmitter release from the presynaptic membrane as suggested by recent studies.


Subject(s)
Intellectual Disability/genetics , Membrane Proteins/physiology , Nerve Tissue Proteins/physiology , Receptors, AMPA/metabolism , Synaptic Transmission/physiology , Adolescent , Animals , Codon, Nonsense , Female , Hippocampus/metabolism , Humans , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Neurotransmitter Agents/metabolism , Pedigree , Exome Sequencing
10.
CNS Neurosci Ther ; 28(2): 237-246, 2022 02.
Article in English | MEDLINE | ID: mdl-34767694

ABSTRACT

AIMS: This study aimed to explore the pathomechanism of a mutation on the leucine-rich glioma inactivated 1 gene (LGI1) identified in a family having autosomal dominant lateral temporal lobe epilepsy (ADLTE), using a precise knock-in mouse model. METHODS AND RESULTS: A novel LGI1 mutation, c.152A>G; p. Asp51Gly, was identified by whole exome sequencing in a Chinese family with ADLTE. The pathomechanism of the mutation was explored by generating Lgi1D51G knock-in mice that precisely phenocopied the epileptic symptoms of human patients. The Lgi1D51G/D51G mice showed spontaneous recurrent generalized seizures and premature death. The Lgi1D51G/+ mice had partial epilepsy, with half of them displaying epileptiform discharges on electroencephalography. They also showed enhanced sensitivity to the convulsant agent pentylenetetrazole. Mechanistically, the secretion of Lgi1 was impaired in the brain of the D51G knock-in mice and the protein level was drastically reduced. Moreover, the antiepileptic drugs, carbamazepine, oxcarbazepine, and sodium valproate, could prolong the survival time of Lgi1D51G/D51G mice, and oxcarbazepine appeared to be the most effective. CONCLUSIONS: We identified a novel epilepsy-causing mutation of LGI1 in humans. The Lgi1D51G/+ mouse model, precisely phenocopying epileptic symptoms of human patients, could be a useful tool in future studies on the pathogenesis and potential therapies for epilepsy.


Subject(s)
Disease Models, Animal , Epilepsy, Temporal Lobe/genetics , Epilepsy, Temporal Lobe/physiopathology , Intracellular Signaling Peptides and Proteins/genetics , Animals , Child , Female , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...