Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Research (Wash D C) ; 6: 0052, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36930774

ABSTRACT

As a naturally occurring cytolytic peptide, melittin (Mel) has strong cytolytic activity and is a potent therapeutic peptide for cancer therapy. However, the serious hemolytic activity of Mel largely impedes its clinical applications. In this work, based on the strong interactions between proteins/peptides and polyphenols, we develop a tannic acid-Fe3+ metal-phenolic network (MPN)-based strategy that can convert Mel from foe to friend via shielding its positive charges and reducing its hemolytic activity. Besides, an immune adjuvant resiquimod (R848) is also introduced for immunostimulation, affording the final Mel- and R848-coloaded nanodrug. The Mel-caused membrane disruption can induce immunogenic cell death for immunostimulation, R848 can act as an immune adjuvant to further facilitate the immunostimulatory effect, and the tannic acid-Fe3+ MPN-mediated Fenton reaction can produce reactive oxygen species for cancer treatment. Further experiments reveal that the nanodrug can effectively cause immunogenic cell death of tumor cells and arouse robust intratumoral and systemic antitumor immunostimulation. In the bilateral tumor-bearing mouse models, the nanodrug considerably destroys the primary tumor and also boosts the abscopal effect to ablate the distant tumor. Collectively, the MPN-facilitated "foe-to-friend" strategy may promote the practical applications of Mel and foster the development of cancer immunotherapeutics.

2.
Small ; 19(31): e2205890, 2023 08.
Article in English | MEDLINE | ID: mdl-36634974

ABSTRACT

Nucleolus, which participates in many crucial cellular activities, is an ideal target for evaluating the state of a cell or an organism. Here, bright red-emissive carbon dots (termed CPCDs) with excitation-independent/polarity-dependent fluorescence emission are synthesized by a one-step hydrothermal reaction between congo red and p-phenylenediamine. The CPCDs can achieve wash-free, real-time, long-term, and high-quality nucleolus imaging in live cells, as well as in vivo imaging of two common model animals-zebrafish and Caenorhabditis elegans (C. elegans). Strikingly, CPCDs realize the nucleolus imaging of organs/flowing blood cells in zebrafish at a cellular level for the first time, and the superb nucleolus imaging of C. elegans suggests that the germ cells in the spermatheca probably have no intact nuclei. These previously unachieved imaging results of the cells/tissues/organs may guide the zebrafish-related studies and benefit the research of C. elegans development. More importantly, a novel strategy based on CPCDs for in vivo toxicity evaluation of materials/drugs (e.g., Ag+ ), which can visualize the otherwise unseen injuries in zebrafish, is developed. In conclusion, the CPCDs represent a robust tool for visualizing the structures and dynamic behaviors of live zebrafish and C. elegans, and may find important applications in cell biology and toxicology.


Subject(s)
Quantum Dots , Zebrafish , Animals , Carbon/chemistry , Caenorhabditis elegans , Quantum Dots/chemistry , Diagnostic Imaging , Fluorescent Dyes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...