Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 43(1): 76-85, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34480112

ABSTRACT

Acute lung injury (ALI) and its severe form acute respiratory distress syndrome (ARDS) are known as the common causes of respiratory failure in critically ill patients. Myeloid differentiation 2 (MD2), a co-receptor of toll like receptor 4 (TLR4), plays an important role in LPS-induced ALI in mice. Since MD2 inhibition by pharmacological inhibitors or gene knockout significantly attenuates ALI in animal models, MD2 has become an attractive target for the treatment of ALI. In this study we identified two chalcone-derived compounds, 7w and 7x, as new MD2 inhibitors, and investigated the therapeutic effects of 7x and 7w in LPS-induced ALI mouse model. In molecular docking analysis we found that 7w and 7x, formed pi-pi stacking interactions with Phe151 residue of the MD2 protein. The direct binding was confirmed by surface plasmon resonance analysis (with KD value of 96.2 and 31.2 µM, respectively) and by bis-ANS displacement assay. 7w and 7x (2.5, 10 µM) also dose-dependently inhibited the interaction between lipopolysaccharide (LPS) and rhMD2 and LPS-MD2-TLR4 complex formation. In mouse peritoneal macrophages, 7w and 7x (1.25-10 µM) dose-dependently inhibited LPS-induced inflammatory responses, MAPKs (JNK, ERK and P38) phosphorylation as well as NF-κB activation. Finally, oral administration of 7w or 7x (10 mg ·kg-1 per day, for 7 days prior LPS challenge) in ALI mouse model significantly alleviated LPS-induced lung injury, pulmonary edema, lung permeability, inflammatory cells infiltration, inflammatory cytokines expression and MD2/TLR4 complex formation. In summary, we identify 7w and 7x as new MD2 inhibitors to inhibit inflammatory response both in vitro and in vivo, proving the therapeutic potential of 7w and 7x for ALI and inflammatory diseases.


Subject(s)
Acute Lung Injury/drug therapy , Chalcones/pharmacology , Inflammation/drug therapy , Lymphocyte Antigen 96/antagonists & inhibitors , Acute Lung Injury/chemically induced , Administration, Oral , Animals , Cells, Cultured , Chalcones/administration & dosage , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Inflammation/chemically induced , Lipopolysaccharides , Lymphocyte Antigen 96/metabolism , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Structure-Activity Relationship , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/metabolism
2.
Org Biomol Chem ; 9(10): 3817-24, 2011 May 21.
Article in English | MEDLINE | ID: mdl-21445440

ABSTRACT

A concise enantioselective synthesis of malyngamide W (1) and its 2'-epimer was described. The strategy was based on three key steps: (1) ozonolysis of compound 11 which was derived from (R)-(-)-carvone 8, followed by copper-iron-catalyzed rearrangement to give the key cyclohex-2-enone intermediate 5, (2) Nozaki-Hiyama-Kishi coupling reaction between aldehyde 4 and iodide 14 to afford alcohol 3, and (3) asymmetric (R)-CBS reduction of the ketone functionality in compound 21 to establish the C-2' chiral center in the target compound 1. The absolute configuration of malyngamide W (1) was thus confirmed via the synthesis of 1 and 2'-epi-1.


Subject(s)
Cyclohexanones/chemistry , Cyclohexanones/chemical synthesis , Fatty Acids, Monounsaturated/chemistry , Fatty Acids, Monounsaturated/chemical synthesis , Oxidation-Reduction , Stereoisomerism , Substrate Specificity
3.
Neuropeptides ; 43(4): 259-65, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19573913

ABSTRACT

Our previous study has pointed that arginine vasopressin (AVP) and norepinephrine (NA) are two most important bioactive substances that play a role in hypothalamic paraventricular nucleus (PVN) regulating pain process. The communication was designed to investigate the interaction between AVP and NA in the rat PVN during the pain process. We used the potassium iontophoresis inducing tail-flick to test the pain threshold, PVN push-pull perfusion to collect the samples, high performance chromatography (HPLC) to determine the NA concentration and radioimmunoassay (RIA) to measure the AVP concentration. The results showed that (1) pain stimulation increased both NA and AVP concentrations in the PVN perfusion liquid; (2) PVN administration of l-glutamate sodium increased AVP, not NA concentration in the PVN perfusion liquid; (3) AVP or d(CH(2))(5)Tyr(Et)DAVP (AVP-receptor antagonist) neither changed pain threshold, nor influenced NA concentration in the PVN perfusion liquid; (4) Microinjection of NA into PVN could increase pain threshold in a dose-dependent manner, while PVN administration with phentolamine (alpha-receptor antagonist), not propranolol (beta-receptor antagonist) decreased pain threshold; (5) Administration of NA increased AVP concentration, while phentolamine, not propranolol decreased AVP concentration in the PVN perfusion liquid. These data suggested that it is through alpha-receptor rather than beta-receptor, NA induced PVN secretion of AVP that was delivered to the related brain regions to participate in pain modulation.


Subject(s)
Adrenergic alpha-Agonists/pharmacology , Arginine Vasopressin/metabolism , Norepinephrine/pharmacology , Pain Threshold/drug effects , Pain/metabolism , Paraventricular Hypothalamic Nucleus/drug effects , Adrenergic Antagonists/pharmacology , Animals , Iontophoresis , Male , Pain Measurement , Paraventricular Hypothalamic Nucleus/cytology , Radioimmunoassay , Rats , Rats, Sprague-Dawley
4.
J Org Chem ; 73(17): 6873-6, 2008 Sep 05.
Article in English | MEDLINE | ID: mdl-18656980

ABSTRACT

An accelerated and improved asymmetric synthesis of malyngamide U (1) and its 2'-epimer (2'-epi-1) was accomplished from readily available n-hexanal, ethanolamine and (R)-(-)-carvone. The key steps involved a Johnson-Claisen rearrangement in the synthesis of an unsaturated carboxylic acid 4 and an aldol reaction in the construction of the skeleton of 1 and 2'-epi-1. There are 13 steps in the synthesis, with a 2.7% overall yield for 1 and a 0.4% yield for 2'-epi-1.


Subject(s)
Aldehydes/chemistry , Carboxylic Acids/chemistry , Cyclohexanones/chemical synthesis , Ethanolamine/chemistry , Fatty Acids, Monounsaturated/chemical synthesis , Monoterpenes/chemistry , Alcohols/chemistry , Cyclohexane Monoterpenes , Models, Chemical
5.
J Org Chem ; 72(7): 2344-50, 2007 Mar 30.
Article in English | MEDLINE | ID: mdl-17346080

ABSTRACT

The enantioselective synthesis of the previously proposed structure of malyngamide U (1) was accomplished in 18 steps from (S)-(+)-carvone. The key steps involved a hydroxymethylation of (S)-(+)-carvone and an asymmetric Henry reaction of aldehyde (+)-5, as well as condensation with the acid 3. The 1H and 13C NMR data of the synthetic compound 1 were not consistent with the data of the reported malyngamide U. The C-2' epimer of compound 1 was therefore synthesized by a similar reaction sequence. While the NMR data of C-2' epimer 23 were in full agreement with those of the reported product, the discrepancy in the specific rotation data suggested the correct structure of malyngamide U should be structure 2, in which the absolute configuration of the amine part was enantiomeric with that in compound 23. Then the correct absolute configuration of revised malyngamide U (2) was confirmed by the similar synthesis from (R)-(-)-carvone.


Subject(s)
Cyclohexanones/chemical synthesis , Fatty Acids, Monounsaturated/chemical synthesis , Alcohols/chemistry , Aldehydes/chemistry , Cyclohexanones/chemistry , Fatty Acids, Monounsaturated/chemistry , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...