Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chempluschem ; : e202400069, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955991

ABSTRACT

Covalent organic frameworks (COFs) are an innovative class of crystalline porous polymers composed of light elements such as C, N, O, etc., linked by covalent bonds. The distinctive properties of COFs, including designable building blocks, large specific surface area, tunable pore size, abundant active sites, and remarkable stability, have led their widespread applications in electrocatalysis. In recent years, COF-based electrocatalysts have made remarkable progress in various electrocatalytic fields, including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, nitrogen reduction reaction, nitrate reduction reaction, and carbon dioxide reduction reaction. This review begins with an introduction to the design and synthesis strategies employed for COF-based electrocatalysts. These strategies include heteroatom doping, metalation of COF and building monomers, encapsulation of active sites within COF pores, and the development of COF-based derived materials. Subsequently, a systematic overview of the recent advancements in the application of COF-based catalysts in electrocatalysis is presented. Finally, the review discusses the main challenges and outlines possible avenues for the future development of COF-based electrocatalysts.

2.
Chem Sci ; 14(42): 11768-11774, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37920350

ABSTRACT

The water oxidation reaction plays an important role in clean energy conversion, utilization, and storage, but mimicking the oxygen-evolving complex of photosystem II for designing active and stable water oxidation catalysts (WOCs) is still an appealing challenge. Here, we innovatively engineered a molecular ruthenium WOC as a metal complex building unit to construct a series of three-dimensional metal covalent organic frameworks (3D MCOFs) for realizing efficient oxidation catalysis. The resultant MCOFs possessed rare 3D interlocking structures with inclined interpenetration of two-dimensional covalent rhombic nets, and the Ru sites were periodically arranged in the crystalline porous frameworks. Impressively, these MCOFs showed excellent performance towards water oxidation (the O2 evolution rate is as high as 2830 nmol g-1 s-1) via the water nucleophilic attack pathway. Besides, the MCOFs were also reactive for oxidizing organic substrates. This work highlights the potential of MCOFs as a designable platform in integrating molecular catalysts for various applications.

3.
Chemistry ; 29(62): e202302201, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37565784

ABSTRACT

Non-platinum noble metals are highly desirable for the development of highly active, stable oxygen reduction reaction (ORR) electrocatalysts for fuel cells and metal-air batteries. However, how to improve the utilization of non-platinum noble metals is an urgent issue. Herein, a highly efficient catalyst for ORR was prepared through homogeneous loading of Pd precursors by a domain-limited method in a three-dimensional covalent organic framework (COF) followed by pyrolysis. The morphology of the Pd nanoparticles (Pd NPs) was well maintained after carbonization, which was attributed to the rigid structure of the 3D COF. Thanks to the uniform distribution of Pd NPs in the carbon, the catalyst exhibited a remarkable half-wave potential of 0.906 V and a Tafel slope of 70 mV dec-1 in 0.1 M KOH, surpassing the commercial Pt/C catalyst (0.863 V and 75 mV dec-1 ). Furthermore, a maximum power density of 144.0 mW cm-2 was achieved at 252 mA cm-2 , which was significantly higher than the control battery (105.1 mW cm-2 ). This work not only provides a simple strategy for in-situ preparation of highly dispersible metal catalysts in COFs, but also offers new insights into the ORR electrocatalysis.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 189: 608-612, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-28886507

ABSTRACT

A plasmon induced carrier movement enhanced mechanism of surface-enhanced Raman scattering (SERS) was investigated using a charge-transfer (CT) enhancement mechanism. Here, we designed a strategy to study SERS in Au@Cu2O nanoshell nanoparticles with different shell thicknesses. Among the plasmonically coupled nanostructures, Au spheres with Cu2O shells have been of special interest due to their ultrastrong electromagnetic fields and controllable carrier transfer properties, which are useful for SERS. Au@Cu2O nanoshell nanoparticles (NPs) with shell thicknesses of 48-56nm are synthesized that exhibit high SERS activity. This high activity originates from plasmonic-induced carrier transfer from Au@Cu2O to 4-mercaptobenzoic acid (MBA). The CT transition from the valence band (VB) of Cu2O to the second excited π-π* transition of MBA, and is of b2 electronic symmetry, which was enhanced significantly. The Herzberg-Teller selection rules were employed to predict the observed enhanced b2 symmetry modes. The system constructed in this study combines the long-range electromagnetic effect of Au NPs, localized surface plasmon resonance (LSPR) of the Au@Cu2O nanoshell, and the CT contribution to assist in understanding the SERS mechanism based on LSPR-induced carrier movement in metal/semiconductor nanocomposites.

5.
J Comput Chem ; 32(4): 658-67, 2011 Mar.
Article in English | MEDLINE | ID: mdl-20845421

ABSTRACT

Stimulated by the recent isolation and characterization of C56Cl10 chlorofullerene (Tan et al., J Am Chem Soc 2008, 130, 15240), we perform a systematic study on the geometrical structures, thermochemistry, and electronic and optical properties of C56X10 (X = H, F, and Cl) on the basis of density functional theory (DFT). Compared with pristine C56, the equatorial carbon atoms in C56X10 are saturated by X atoms and change to sp³ hybridization to release the large local strains. The addition reactions C56 + 5X2 --> C56X10 are highly exothermic, and the optimal temperature for synthesizing C56X10 should be ranged between 500 and 1000 K. By combining 10 X atoms at the abutting pentagon vertexes and active sites, C56Cl10 molecules exhibit large energy gaps between the highest occupied and lowest unoccupied molecular orbitals (from 2.84 to 3.00 eV), showing high chemical stabilities. The C56F10 and C56Cl10 could be excellent electron acceptors for potential photonic/photovoltaic applications in consequence of their large vertical electron affinities. The density of states is also calculated, which suggest that the frontier molecular orbitals of C56X10 are mainly from the carbon orbitals of two separate annulene subunits, and the contributions derived from X atoms are secondary. In addition, the ultraviolet-visible spectra and second-order hyperpolarizabilities of C56X10 are calculated by means of time-dependent DFT and finite field approach, respectively. Both the average static linear polarizability <α> and second-order hyperpolarizability <γ> of these compounds are larger than those of C60 due to lower symmetric structures and high delocalization of π electron density on the two separate annulene subunits.


Subject(s)
Fullerenes/chemistry , Electrons , Models, Molecular , Optical Phenomena , Quantum Theory , Spectrophotometry
6.
J Comput Chem ; 31(14): 2650-7, 2010 Nov 15.
Article in English | MEDLINE | ID: mdl-20740565

ABSTRACT

Electronic structures and nonlinear optical properties of two highly deformed halofullerenes C(3v) C(60)F(18) and D(3d) C(60)Cl(30) have been systematically studied by means of density functional theory. The large energy gaps (3.62 and 2.61 eV) between the highest occupied and lowest unoccupied molecular orbitals (HOMOs and LUMOs) and the strong aromatic character (with nucleus-independent chemical shifts varying from -15.08 to -23.71 ppm) of C(60)F(18) and C(60)Cl(30) indicate their high stabilities. Further investigations of electronic property show that C(60)F(18) and C(60)Cl(30) could be excellent electron acceptors for potential photonic/photovoltaic applications in consequence of their large vertical electron affinities. The density of states and frontier molecular orbitals are also calculated, which present that HOMOs and LUMOs are mainly distributed in the tortoise shell subunit of C(60)F(18) and the aromatic [18] trannulene ring of C(60)Cl(30), and the influence from halogen atoms is secondary. In addition, the static linear polarizability and second-order hyperpolarizability of C(60)F(18) and C(60)Cl(30) are calculated using finite-field approach. The values of and for C(60)F(18) and C(60)Cl(30) molecules are significantly larger than those of C(60) because of their lower symmetric structures and high delocalization of pi electrons.


Subject(s)
Electrons , Fullerenes/chemistry , Optics and Photonics , Molecular Dynamics Simulation , Quantum Theory
7.
J Mol Graph Model ; 28(8): 891-8, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20430661

ABSTRACT

A systematic study on the geometrical structures and electronic properties of C(68)X(4) (X=H, F, and Cl) fullerene compounds has been carried out on the basis of density functional theory. In all classical C(68)X(4) isomers with two adjacent pentagons and one quasifullerene isomer [C(s):C(68)(f)] containing a heptagon in the framework, the C(s):0064 isomers are most favorable in energy. The addition reaction energies of C(68)X(4) (C(s):0064) are high exothermic, and C(68)F(4) is more thermodynamically accessible. The C(68)X(4) (C(s):0064) possess strong aromatic character, with nucleus independent chemical shifts ranging from -22.0 to -26.1 ppm. Further investigations on electronic properties indicate that C(68)F(4) and C(68)Cl(4) could be excellent electron-acceptors for potential photonic/photovoltaic applications in consequence of their large vertical electron affinities (3.29 and 3.15 eV, respectively). The Mulliken charge populations and partial density of states are also calculated, which show that decorating C(68) fullerene with various X atoms will cause remarkably different charge distributions in C(68)X(4) (C(s):0064) and affect their electronic properties distinctly. Finally, the infrared spectra of the most stable C(68)X(4) (C(s):0064) molecules are simulated to assist further experimental characterization.


Subject(s)
Fullerenes/chemistry , Models, Molecular , Algorithms , Electrochemistry , Molecular Structure , Thermodynamics
8.
J Chem Phys ; 130(12): 124705, 2009 Mar 28.
Article in English | MEDLINE | ID: mdl-19334870

ABSTRACT

Stimulated by the mass spectroscopic observation of the metallofullerene Ca@C(44), we have performed a systematic investigation to search for the most stable isomer using HF/3-21G approximately LanL2DZ, HF/6-31+G(d), B3LYP/6-31+G(d), and MP2/6-31+G(d)//B3LYP/6-31+G(d) methods. The Ca@C(44) (D(2):53) isomer with eight adjacent pentagons in the fullerene framework is predicted to possess the lowest energy. The thermodynamics stability explorations of Ca@C(44) isomers at different temperatures show that Ca@C(44) (D(2):53) is the most thermodynamically stable in the temperature range of absolute zero to 4000 K. The encapsulation of Ca atom in C(44) fullerene is exothermic, and the electronic structure of Ca@C(44) (D(2):53) can be described formally as Ca(2+)@C(44) (2-). Further analysis on the frontier molecular orbitals and density of states of Ca@C(44) (D(2):53) suggests that both highest occupied molecular orbital and lowest unoccupied molecular orbital are carbonlike with low Ca character, and the carbon cage possesses high chemical activity. In addition, the vibrational spectrum of Ca@C(44) (D(2):53) has been simulated and analyzed to gain an insight into the metal-cage vibrations.

SELECTION OF CITATIONS
SEARCH DETAIL
...