Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 769: 145166, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33486185

ABSTRACT

Salinity stress is common for plants growing in coastal wetlands. The addition of biochar in the soil may alleviate the negative effect of salinity through its unique physicochemical properties. To test this, we conducted a greenhouse experiment where the cosmopolitan wetland plant Phragmites australis was subjected to four salinity treatments (0, 5, 10 and 15‰) and three biochar treatments (no biochar addition, with biochar addition and with biochar-compost addition, both biochar and compost were made from P. australis) in a factorial design. Both biochar addition and biochar-compost addition to the substrate enhanced belowground mass of P. australis, application of biochar-compost significantly increased total mass by 35.5% and net photosynthesis rate of P. australis by 51.4%. Both biochar addition and biochar-compost addition significantly increased soil organic carbon content by 62.9% and 31.7%, respectively, but decreased soil ammonium nitrogen content. In the saline soil, application of the mixture of biochar-compost had a strong, and positive effect on the growth of P. australis, compared to biochar alone. Therefore, incorporation of biochar and compost might be an appropriate approach to improve the productivity of P. australis growing in coastal wetlands, where soil salinity is a common environmental stress.


Subject(s)
Composting , Soil , Carbon , Charcoal , Wetlands
2.
Sci Total Environ ; 766: 144381, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33418260

ABSTRACT

Nitrogen (N) is a key factor that limits plant growth in most terrestrial ecosystems, and biochar reportedly improves soil characteristics and grain yields. However, the effects of biochar on plant N uptake in wetland ecosystems and the underlying mechanisms of these effects remain unclear. Therefore, our study sought to characterise the effects of biochar addition on Phragmites australis N absorption rates at two different N deposition conditions [30 and 60 kg N hm-2 yr-1; i.e., "low" and "high" N treatments, respectively]. Our results demonstrated that biochar significantly promoted root biomass growth in P. australis in the high N treatment group. In contrast, the low N treatment group exhibited an increased proportion of fine roots and a decrease in the average P. australis root diameter. The N absorption rate of P. australis in the low N treatment group significantly increased with biochar addition and ammonium N became the preferred N source. The absorption rates of both ammonium and nitrate N were negatively correlated with the average P. australis root diameter. Therefore, our findings indicate that biochar may affect the N uptake strategy of P. australis by altering root morphogenesis, thereby providing new insights into potential restoration strategies for wetland vegetation.


Subject(s)
Ecosystem , Nitrogen , Charcoal , Plant Roots , Poaceae , Soil
3.
Sci Total Environ ; 761: 143291, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33199007

ABSTRACT

Biochar addition can enhance plant growth and change soil physicochemical properties in saline soil. However, it is unclear whether the positioning of biochar additions (e.g., rhizosphere addition and surface addition) alters such impacts and whether such positioning effects interact with salinity levels. In the Yellow River Delta, China, we carried out a field experiment in which biochar was not added (control) or was added to the soil surface (surface addition) or to the soil at the rhizosphere position (rhizosphere addition) of Phragmites australis in three sites with different salt levels (1‰ - low, 5‰ - medium and 10‰ - high). Rhizosphere addition of biochar significantly improved the growth of P. australis, especially its fine root mass. Both rhizosphere addition and surface addition of biochar significantly decreased nitrate nitrogen content and electrical conductivity, and the inhibitory effects were more effective at the sites with medium and high salt levels in 2018. Structural equation modeling showed that biochar addition could directly increase the fine root mass of P. australis by decreasing the soil electrical conductivity, further improving the total mass of P. australis. Overall, rhizosphere addition of biochar is a better choice for improving the productivity of P. australis in saline soil and is beneficial to P. australis wetland restoration in the Yellow River Delta. Long-term field research is needed to better understand the effect and mechanism of biochar application.


Subject(s)
Rhizosphere , Soil , Charcoal , China , Poaceae , Rivers
SELECTION OF CITATIONS
SEARCH DETAIL
...