Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Bot ; : e16350, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825760

ABSTRACT

PREMISE: The Caryophyllaceae (the carnation family) have undergone multiple transitions into colder climates and convergence on cushion plant adaptation, indicating that they may provide a natural system for cold adaptation research. Previous research has suggested that putative ancient whole-genome duplications (WGDs) are correlated with niche shifts into colder climates across the Caryophyllales. Here, we explored the genomic changes potentially involved in one of these discovered shifts in the Caryophyllaceae. METHODS: We constructed a data set combining 26 newly generated transcriptomes with 45 published transcriptomes, including 11 cushion plant species across seven genera. With this data set, we inferred a dated phylogeny for the Caryophyllaceae and mapped ancient WGDs and gene duplications onto the phylogeny. We also examined functional groups enriched for gene duplications related to the climatic shift. RESULTS: The ASTRAL topology was mostly congruent with the current consensus of relationships within the family. We inferred 15 putative ancient WGDs in the family, including eight that have not been previously published. The oldest ancient WGD (ca. 64.4-56.7 million years ago), WGD1, was found to be associated with a shift into colder climates by previous research. Gene regions associated with ubiquitination were overrepresented in gene duplications retained after WGD1 and those convergently retained by cushion plants in Colobanthus and Eremogone, along with other functional annotations. CONCLUSIONS: Gene family expansions induced by ancient WGDs may have contributed to the shifts to cold climatic niches in the Caryophyllaceae. Transcriptomic data are crucial resources that help unravel heterogeneity in deep-time evolutionary patterns in plants.

3.
Plants (Basel) ; 12(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37375971

ABSTRACT

Osmanthus fragrans is a popular ornamental and odorant plant with high commercial value, but its cultivation and exploitation are limited by low temperature. The ZAT (zinc finger of Arabidopsis thaliana) genes as a subclass of the C2H2-type zinc finger proteins (C2H2-ZFP) family play essential roles in various abiotic stresses. However, their roles in cold stress response in O. fragrans remain unclear. This study identified 38 OfZATs, which could be divided into 5 subgroups based on the phylogenetic tree, with OfZATs in the same subgroup harboring similar gene structures and motif patterns. In addition, 49 segmental and 5 tandem duplication events were detected among OfZAT genes, while some OfZAT genes exhibited specific expression patterns in different tissues. Furthermore, two OfZATs were induced in salt stress and eight OfZATs responded to cold stress. Interestingly, OfZAT35 showed a continuously increasing expression trend under cold stress, while its protein showed nucleus localization with no transcriptional activation activity. Transiently transformed tobacco overexpressing OfZAT35 exhibited a significantly higher relative electrolyte leakage (REL) level and increased activities of superoxide dismutase (SOD), peroxidase (POD), and Ascorbate peroxidase (APX), while there was significantly decreased activity of catalase (CAT). Moreover, CAT, DREB3, and LEA5, which are associated with cold stress, were dramatically decreased after cold treatment in transiently transformed tobacco, suggesting that overexpression of OfZAT35 negatively regulated cold stress. This study provides a basis for exploring the roles of ZAT genes and contributes to uncovering the mechanism of ZAT-mediated cold stress response in O. fragrans.

4.
Orthop Surg ; 14(11): 2845-2853, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36120826

ABSTRACT

OBJECTIVE: During PCL reconstruction surgery, precise and personalized positioning of the graft tunnel is very important. In order to obtain patient-specific anatomical data, we established a three-dimensional knee joint fusion model to provide a unified imaging strategy, as well as anatomical information, for individualized and accurate posterior cruciate ligament (PCL) reconstruction. METHODS: This is an exploration study. From January 2019 to January 2020, 20 healthy adults randomly were enrolled and assessed via CT and MRI imaging. A three-dimensional fusion model of the knee joint was generated using the modified MIMIMICS and image fusion software. On the fused image, the areas of the femoral and tibial PCL footprint of both knees were measured. The anatomical center of the PCL footprint was measured at the femoral and tibial ends. The relevant bony landmarks surrounding the PCL femoral and tibial attachment were also measured. Paired t-tests were employed for all statistical analyzes, and p < 0.05 was considered as statistically significant. RESULTS: All 20 subjects achieved successful image fusion modeling and measurement, with an average duration of 12 h. The lengths of the LF1-LF3 were 32.1 ± 1.8, 6.8 ± 2.5, and 23.3 ± 2.1 mm, respectively. The lengths of the LT1-LT3 were 37.3 ± 3.3, 45.6 ± 5.3, and 6.0 ± 1.2 mm, respectively. The distances between the tibial PCL center of the left knee to the medial groove, champagne-glass drop-off, and the apex of the medial intercondylar were 8.4 ± 2.4, 9.2 ± 1.8, and 15.3 ± 1.4 mm, respectively, and the corresponding distances from the right knee were 8.0 ± 2.0, 9.4 ± 2.2, and 16.1 ± 1.8 mm, respectively. We observed no difference between the bilateral sides, in terms of the distance from the PCL center to the PCL attachment-related landmark, under arthroscopic guidance. The area of the femoral and tibial PCL footprints on the left knee were 115.3 ± 33.5 and 146.6 ± 24.4 mm2 , respectively, and the corresponding areas on the right knee were 121.8 ± 35.6 and 142.8 ± 19.5 mm2 , respectively. There was no difference between the bilateral sides in terms of the PCL footprint areas. CONCLUSION: In the fusion image, the PCL attachment center and relevant bony landmarks which can be easily identified under arthroscopy can be accurately measured. The model can also obtain personalized anatomical data of the PCL on the unaffected side of the patient, which can guide clinical PCL reconstruction.


Subject(s)
Posterior Cruciate Ligament , Adult , Humans , Posterior Cruciate Ligament/surgery , Imaging, Three-Dimensional , Tibia/surgery , Knee Joint/surgery , Femur/surgery , Tomography, X-Ray Computed , Magnetic Resonance Imaging
5.
Food Chem ; 315: 126308, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32035316

ABSTRACT

Classification of Feng-flavor Baijiu considering aging category was furnished with a comprehensive fingerprinting strategy which used UPLC-Orbitrap and foodomics, and the most discriminant 29 compounds related to aging, 15 organic acids, 8 esters as well as some carbonyl compounds were discovered. Increase of aromatic organic acids, decline of carcinogenic dibutyl phthalate and generation of numerous aromatic substances in Baijiu were caused by irradiation until the system reached a relatively stable state which needed 28 days. It is similarity of physical and chemical reaction process of natural aging and irradiation maturation that both can facilitate flavor of base Baijiu, while the aging time can be plainly shorten utilizing irradiation for Baijiu, whose outcome has been demonstrated by LC-MS and sensory evaluation. The combination of UPLC-Orbitrap and foodomics was applied as a valid tactic to analyze a complex system and gamma irradiation can be a powerful tool to promote Baijiu aging.


Subject(s)
Alcoholic Beverages/analysis , Food Analysis , Acids/analysis , Chromatography, High Pressure Liquid , Esters/analysis , Flavoring Agents/analysis , Flavoring Agents/chemistry , Gamma Rays , Tandem Mass Spectrometry , Taste , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...