Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
J Exp Bot ; 71(22): 7224-7240, 2020 12 31.
Article in English | MEDLINE | ID: mdl-32915204

ABSTRACT

Photosynthesis, an indispensable biological process of plants, produces organic substances for plant growth, during which photorespiration occurs to oxidize carbohydrates to achieve homeostasis. Although the molecular mechanism underlying photosynthesis and photorespiration has been widely explored, the crosstalk between the two processes remains largely unknown. In this study, we isolated and characterized a T-DNA insertion mutant of tomato (Solanum lycopersicum) named yellow leaf (yl) with yellowish leaves, retarded growth, and chloroplast collapse that hampered both photosynthesis and photorespiration. Genetic and expression analyses demonstrated that the phenotype of yl was caused by a loss-of-function mutation resulting from a single-copy T-DNA insertion in chaperonin 60α1 (SlCPN60α1). SlCPN60α1 showed high expression levels in leaves and was located in both chloroplasts and mitochondria. Silencing of SlCPN60α1using virus-induced gene silencing and RNA interference mimicked the phenotype of yl. Results of two-dimensional electrophoresis and yeast two-hybrid assays suggest that SlCPN60α1 potentially interacts with proteins that are involved in chlorophyll synthesis, photosynthetic electron transport, and the Calvin cycle, and further affect photosynthesis. Moreover, SlCPN60α1 directly interacted with serine hydroxymethyltransferase (SlSHMT1) in mitochondria, thereby regulating photorespiration in tomato. This study outlines the importance of SlCPN60α1 for both photosynthesis and photorespiration, and provides molecular insights towards plant genetic improvement.


Subject(s)
Solanum lycopersicum , Chaperonin 60 , Chloroplasts , Solanum lycopersicum/genetics , Photosynthesis , Plant Leaves
SELECTION OF CITATIONS
SEARCH DETAIL