Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(14): 16508-16518, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38617687

ABSTRACT

The global accumulation and adverse effects of nanoplastics (NPs) are a growing concern for the environment and human health. In recent years, more and more studies have begun to focus on the toxicity of plastic particles for early animal development. Different particle sizes of plastic particles have different toxicities to biological development. Nevertheless, the potential toxicological effects of 20 nm NPs, especially on neurodevelopment, have not been well investigated. In this paper, we used fluorescence microscopy to determine neurotoxicity in zebrafish at different concentrations of NPs. Moreover, the behavioral analysis demonstrated that NPs induced abnormal behavior of zebrafish. The results revealed developmental defects in zebrafish embryos after exposure to different concentrations (0, 0.3, 3, and 9 mg/L) of NPs. The morphological deformities, including abnormal body length and the rates of heart, survival, and hatching, were induced after NP exposure in zebrafish embryos. In addition, the development of primary motor neurons was observed the inhibitory effects of NPs on the length, occurrence, and development of primary motor neurons in Tg(hb9:GFP). Quantitative polymerase chain reaction analysis suggested that exposure to NPs significantly affects the expression of the genes involved in the occurrence and differentiation of primary motor neurons in zebrafish. Furthermore, the indicators associated with oxidative stress and apoptosis were found to be modified in zebrafish embryos at 24 and 48 h following exposure to NPs. Our findings demonstrated that NPs could cause toxicity in primary motor neurons by activating the oxidative stress response and inducing apoptosis, consequently impairing motor performance.

2.
Biol Reprod ; 110(5): 908-923, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38288660

ABSTRACT

FOXP2 was initially characterized as a transcription factor linked to speech and language disorders. Single-cell RNA sequencing reveals that Foxp2 is enriched in the gonadotrope cluster of the pituitary gland and colocalized with the hormones LHB and FSHB in chickens and mice, implying that FOXP2 might be associated with reproduction in vertebrates. Herein, we investigated the roles of foxp2 in reproduction in a Foxp2-deficient zebrafish model. The results indicated that the loss of Foxp2 inhibits courtship behavior in adult male zebrafish. Notably, Foxp2 deficiency disrupts gonad development, leading to retardation of follicle development and a decrease in oocytes in females at the full-growth stage, among other phenotypes. The transcriptome analysis (RNA-seq) also revealed that differentially expressed genes clustered into the estrogen signaling and ovarian steroidogenesis-related signaling pathways. In addition, we found that Foxp2 deficiency could modulate the hypothalamic-pituitary-gonadal axis, especially the regulation of lhb and fshb expression, in zebrafish. In contrast, the injection of human chorionic gonadotropin, a specific LH agonist, partially rescues Foxp2-impaired reproduction in zebrafish, suggesting that Foxp2 plays an important role in the regulation of reproduction via the hypothalamic-pituitary-gonadal axis in zebrafish. Thus, our findings reveal a new role for Foxp2 in the regulation of reproduction in vertebrates.


Subject(s)
Forkhead Transcription Factors , Hypothalamo-Hypophyseal System , Reproduction , Zebrafish , Animals , Zebrafish/genetics , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Hypothalamo-Hypophyseal System/metabolism , Female , Male , Reproduction/physiology , Reproduction/genetics , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Zebrafish Proteins/deficiency , Gonads/metabolism , Hypothalamic-Pituitary-Gonadal Axis
3.
Chemosphere ; 312(Pt 2): 137360, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36427586

ABSTRACT

The widespread accumulation and adverse effects of nanoplastics (NPs) are a growing concern for environmental and human health. However, the potential toxicological effects of nanoplastics, especially on vascular development, have not been well studied. In this study, the zebrafish model was utilized to systematically study the developmental toxicity of nanoplastics exposure at different concentrations with morphological, histological, and molecular levels. The results revealed developmental defects in zebrafish embryos after exposure to different concentrations of nanoplastics. Specifically, the morphological deformities, including pericardial oedema and spine curvature, as well as the abnormal body length and the rates of survival and hatching were induced after nanoplastics exposure in zebrafish embryos. In addition, we found that nanoplastics exposure could induce vascular malformation, including the ectopic sprouting of intersegmental vessels (ISVs), malformation of superficial ocular vessels (SOVs), and overgrowth of the common cardinal vein (CCV), as well as the disorganized vasculature of the subintestinal venous plexus (SIVP). Moreover, further study indicated that SU5416, a specific vascular endothelial growth factor receptor (VEGFR) inhibitor, partially rescued the nanoplastics exposure-impaired vasculature, suggesting that the VEGFA/VEGFR pathway might be associated with nanoplastics-induced vascular malformation in zebrafish embryos. Further quantitative polymerase chain reaction assays revealed that the mRNA levels of VEGFA/VEGFR pathway-related genes, including vegfa, nrp1, klf6a, flt1, fih-1, flk1, cldn5a, and rspo3, were altered in different groups, indicating that nanoplastics exposure interferes with the VEGFA/VEGFR pathway, thereby inducing vascular malformation during the early developmental stage in zebrafish embryos. Therefore, our findings illustrated that nanoplastics might induce vascular malformation by regulating VEGFA/VEGFR pathway-related genes at the early developmental stage in zebrafish.


Subject(s)
Cardiovascular Abnormalities , Microplastics , Vascular Malformations , Animals , Claudin-5 , Intracellular Signaling Peptides and Proteins , Microplastics/toxicity , Nerve Tissue Proteins , Receptors, Vascular Endothelial Growth Factor , Vascular Endothelial Growth Factor A/genetics , Zebrafish , Zebrafish Proteins
4.
ACS Omega ; 7(36): 32153-32163, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36119974

ABSTRACT

The widespread accumulation of nanoplastics is a growing concern for the environmental and human health. However, studies on the mechanisms of nanoplastic-induced developmental toxicity are still limited. Here, we systematically investigated the potential biological roles of nanoplastic exposure in zebrafish during the early developmental stage. The zebrafish embryos were subjected to exposure to 100 nm polystyrene nanoplastics with different concentrations (0, 100, 200, and 400 mg/L). The results indicated that nanoplastic exposure could decrease the hatching and survival rates of zebrafish embryos. In addition, the developmental toxicity test indicated that nanoplastic exposure exhibits developmental toxicity via the inhibition of the heart rate and body length in zebrafish embryos. Besides, behavioral activity was also significantly suppressed after 96 h of nanoplastic exposure in zebrafish larvae. Further biochemical assays revealed that nanoplastic-induced activation of the oxidative stress responses, including reactive oxygen species accumulation and enhanced superoxide dismutase and catalase activities, might affect developmental toxicity in zebrafish embryos. Furthermore, a quantitative polymerase chain reaction assay demonstrated that the mRNA levels of the base excision repair (BER) pathway-related genes, including lig1, lig3, polb, parp1, pold, fen1, nthl1, apex, xrcc1, and ogg1, were altered in zebrafish embryos for 24 h after nanoplastic exposure, indicating that the activation of the BER pathway would be stimulated after nanoplastic exposure in zebrafish embryos. Therefore, our findings illustrated that nanoplastics could induce developmental toxicity through activation of the oxidative stress response and BER pathways in zebrafish.

5.
J Exp Clin Cancer Res ; 40(1): 262, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34416907

ABSTRACT

BACKGROUND: Liver cancer, mainly hepatocellular carcinoma, is one of the deadliest cancers worldwide and has a poor prognosis due to insufficient understanding of hepatocarcinogenesis. Previous studies have revealed that the mutations in PTEN and TP53 are the two most common genetic events in hepatocarcinogenesis. Here, we illustrated the crosstalk between aberrant Pten and Tp53 pathways during hepatocarcinogenesis in zebrafish. METHODS: We used the CRISPR/Cas9 system to establish several transgenic zebrafish lines with single or double tissue-specific mutations of pten and tp53 to genetically induce liver tumorigenesis. Next, the morphological and histological determination were performed to investigate the roles of Pten and Tp53 signalling pathways in hepatocarcinogenesis in zebrafish. RESULTS: We demonstrated that Pten loss alone induces hepatocarcinogenesis with only low efficiency, whereas single mutation of tp53 failed to induce tumour formation in liver tissue in zebrafish. Moreover, zebrafish with double mutations of pten and tp53 exhibits a much higher tumour incidence, higher-grade histology, and a shorter survival time than single-mutant zebrafish, indicating that these two signalling pathways play important roles in dynamic biological events critical for the initiation and progression of hepatocarcinogenesis in zebrafish. Further histological and pathological analyses showed significant similarity between the tumours generated from liver tissues of zebrafish and humans. Furthermore, the treatment with MK-2206, a specific Akt inhibitor, effectively suppressed hepatocarcinogenesis in zebrafish. CONCLUSION: Our findings will offer a preclinical animal model for genetically investigating hepatocarcinogenesis and provide a useful platform for high-throughput anticancer drug screening.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cell Transformation, Neoplastic/genetics , Genes, p53 , Liver Neoplasms/genetics , Mutation , PTEN Phosphohydrolase/genetics , Animals , Animals, Genetically Modified , CRISPR-Cas Systems , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Transformation, Neoplastic/metabolism , Gene Editing , Gene Expression , Gene Knockdown Techniques , Gene Targeting , Genetic Vectors , Humans , Immunohistochemistry , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Neoplasm Grading , Organ Specificity/genetics , RNA, Guide, Kinetoplastida , Signal Transduction , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...