Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Discov ; 10(1): 49, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38740803

ABSTRACT

Chimeric antigen receptor T (CAR-T) cells have been proposed for HIV-1 treatment but have not yet demonstrated desirable therapeutic efficacy. Here, we report newly developed anti-HIV-1 CAR-T cells armed with endogenic broadly neutralizing antibodies (bNAbs) and the follicle-homing receptor CXCR5, termed M10 cells. M10 cells were designed to exercise three-fold biological functions, including broad cytotoxic effects on HIV-infected cells, neutralization of cell-free viruses produced after latency reversal, and B-cell follicle homing. After demonstrating the three-fold biological activities, M10 cells were administered to treat 18 HIV-1 patients via a regimen of two allogenic M10 cell infusions with an interval of 30 days, with each M10 cell infusion followed by two chidamide stimulations for HIV-1 reservoir activation. Consequently, 74.3% of M10 cell infusions resulted in significant suppression of viral rebound, with viral loads declining by an average of 67.1%, and 10 patients showed persistently reduced cell-associated HIV-1 RNA levels (average decrease of 1.15 log10) over the 150-day observation period. M10 cells were also found to impose selective pressure on the latent viral reservoir. No significant treatment-related adverse effects were observed. Overall, our study supported the potential of M10 CAR-T cells as a novel, safe, and effective therapeutic option for the functional cure of HIV-1/AIDS.

2.
Food Funct ; 14(4): 2096-2111, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36734470

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is a chronic liver disease with few therapeutic options available currently. Hemp seed oil extracted from the seeds of hemp (Cannabis sativa L.) has significant nutritional and biological properties due to the unique composition of polyunsaturated fatty acids and various antioxidant compounds. However, little is known about the beneficial effects and molecular mechanisms of hemp seed oil on NASH. Here, the hepatoprotective effects of hemp seed oil on methionine-choline-deficient (MCD) diet-induced NASH in C57BL/6 mice were explored via integration of transcriptomics and metabolomics. Hemp seed oil could improve hepatic steatosis, inflammation and fibrosis in mice with MCD diet-induced NASH. In a nuclear magnetic resonance (NMR)-based metabonomic study, the hepatic and urinary metabolic profiles of mice supplemented with hemp seed oil showed a tendency to recover to healthy controls compared to those of NASH mice. Eight potential biomarkers associated with NASH in both liver tissue and urine were restored to near normal levels by administration of hemp seed oil. The proposed pathways were mainly involved in pyrimidine metabolism, one-carbon metabolism, amino acid metabolism, glycolysis and the tricarboxylic acid (TCA) cycle. Hepatic transcriptomics based on Illumina RNA-Seq sequencing showed that hemp seed oil exerted anti-NASH activities by regulating multiple signaling pathways, e.g., downregulation of the TNF signaling pathway, the IL-17 signaling pathway, the MAPK signaling pathway and the NF-κB signaling pathway, which played a pivotal role in the pathogenesis of NASH. In particular, integration of metabonomic and transcriptomic results suggested that hemp seed oil could attenuate NASH-related liver fibrosis by inhibition of glutaminolysis. These results provided new insights into the hepatoprotective effects of hemp seed oil against MCD diet-induced NASH and hemp seed oil might have potential as an effective therapy for NASH.


Subject(s)
Cannabis , Choline Deficiency , Non-alcoholic Fatty Liver Disease , Animals , Mice , Cannabis/metabolism , Methionine/metabolism , Choline/metabolism , Transcriptome , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , Diet , Racemethionine/metabolism , Racemethionine/pharmacology , Choline Deficiency/complications , Choline Deficiency/metabolism , Choline Deficiency/pathology
4.
J Adv Res ; 47: 163-171, 2023 05.
Article in English | MEDLINE | ID: mdl-35995414

ABSTRACT

INTRODUCTION: The on-target off-tumor toxicity of chimeric antigen receptor-engineered T cells (CAR-T) might lead to fatal side effects in cancer patients, which remains as a major obstacle to the clinical application of CAR-T immunotherapy. The off-tumor on-target normal tissue toxicity of CAR-T cells needs to be evaluated in preclinical studies using rational animal models. OBJECTIVES: We aim to develop a rational animal model for assessing the off-tumor on-target normal tissue toxicity of various CAR-T cell designs quickly. METHODS: We used a recombinant adenovirus type 5 carrying human HER2/ERBB2 (Ad5-HER2) or CD47 gene (Ad5-CD47) to rapidly generate a mouse model with tunable human antigen expression on normal liver tissue to determine immunotoxicity of traditional CAR-T and hypoxia-response CAR-T cells in vivo. RESULTS: The obvious liver damage and lymphocyte infiltration were not observed in mice with human antigen-high livers 8 days post-infection. Interestingly, the lethal liver damage, systemic cytokine release and CAR-T cells infiltration in liver were only observed in mice that received traditional CAR-T cells, but not in hypoxia-response CAR-T cells. CONCLUSION: Adenovirus-based expression of target antigen in normal mouse tissue may be a useful method for assessing on-target CAR-T cell toxicity in normal tissues, especially various CAR-T cell designs that have the potency of conditional regulation in tumor microenvironment (TME).


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Mice , Animals , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , T-Lymphocytes , CD47 Antigen/metabolism , Adenoviridae/genetics , Adenoviridae/metabolism , Neoplasms/drug therapy , Tumor Microenvironment
5.
Front Immunol ; 13: 1099991, 2022.
Article in English | MEDLINE | ID: mdl-36761167

ABSTRACT

Background: Rabies is a lethal zoonotic disease that kills approximately 60,000 people each year. Although inactivated rabies vaccines are available, multiple-dose regimensare recommended for pre-exposure prophylaxis or post-exposure prophylaxis,which cuts down the cost- and time-effectiveness, especially in low- and middle incomecountries. Methods: We developed a nucleoside-modified Rabies mRNA-lipid nanoparticle vaccine (RABV-G mRNA-LNP) encoding codon-optimized viral glycoprotein and assessed the immunogenicity and protective efficacy of this vaccine in mice comparing to a commercially available inactivated vaccine. Results: We first showed that, when evaluated in mice, a single vaccination of RABV-G mRNA with a moderate or high dose induces more potent humoral and T-cell immune responses than that elicited by three inoculations of the inactivated vaccine. Importantly, mice receiving a single immunization of RABV-G mRNA, even at low doses, showed full protection against the lethal rabies challenge. We further demonstrated that the humoral immune response induced by single RABV-G mRNA vaccination in mice could last for at least 25 weeks, while a two-dose strategy could extend the duration of the highly protective response to one year or even longer. In contrast, the three-dose regimen of inactivated vaccine failed to do so. Conclusion: Our study confirmed that it is worth developing a single-dose nucleoside-modified Rabies mRNA-LNP vaccine, which could confer much prolonged and more effective protection.


Subject(s)
Rabies Vaccines , Rabies , Animals , Mice , Rabies Vaccines/genetics , Rabies/prevention & control , Nucleosides , RNA, Messenger/genetics , Antibodies, Viral , Vaccination , Immunity, Humoral , Vaccines, Inactivated
6.
Front Immunol ; 12: 771279, 2021.
Article in English | MEDLINE | ID: mdl-34804062

ABSTRACT

It remains poorly defined whether any human miRNAs play protective roles during HIV infection. Here, focusing on a unique cohort of HIV-infected former blood donors, we identified miR-31 (hsa-miR-31) by comparative miRNA profiling as the only miRNA inversely correlating with disease progression. We further validated this association in two prospective cohort studies. Despite conservation during evolution, hsa-miR-31, unlike its mouse counterpart (mmu-miR-31), was downregulated in human T cell upon activation. Our ex vivo studies showed that inhibiting miR-31 in naïve CD4+ T cells promoted a transcriptional profile with activation signature. Consistent with this skewing effect, miR-31 inhibition led to remarkably increased susceptibility to HIV infection. The suppressive nature of miR-31 in CD4+ T cell activation was pinpointed to its ability to decrease T-bet, the key molecule governing IFN-γ production and activation of CD4+ T cells, by directly targeting the upstream STAT1 transcriptional factor for downregulation, thus blunting Th1 response. Our results implicated miR-31 as a useful biomarker for tracking HIV disease progression and, by demonstrating its importance in tuning the activation of CD4+ T cells, suggested that miR-31 may play critical roles in other physiological contexts where the CD4+ T cell homeostasis needs to be deliberately controlled.


Subject(s)
HIV Infections/genetics , HIV Infections/immunology , MicroRNAs/immunology , T-Lymphocytes/immunology , Adult , Biomarkers , Disease Progression , Female , Genetic Predisposition to Disease , HEK293 Cells , Homeostasis , Humans , Interferon-gamma/immunology , Male , Middle Aged , STAT1 Transcription Factor/immunology , T-Box Domain Proteins/immunology
7.
J Immunother Cancer ; 9(10)2021 10.
Article in English | MEDLINE | ID: mdl-34615704

ABSTRACT

BACKGROUND: Hypoxia is a striking feature of most solid tumors and could be used to discriminate tumors from normoxic tissues. Therefore, the design of hypoxia-conditioned Chimeric Antigen Receptor (CAR) T cells is a promising strategy to reduce on-target off-tumor toxicity in adoptive cell therapy. However, existing hypoxia-conditioned CAR-T designs have been only partially successful in enhancing safety profile but accompanied with reduced cytotoxic efficacy. Our goal is to further improve safety profile with retained excellent antitumor efficacy. METHODS: In this study, we designed and constructed a hypoxia-inducible transcription amplification system (HiTA-system) to control the expression of CAR in T (HiTA-CAR-T) cells. CAR expression was determined by Flow cytometry, and the activation and cytotoxicity of HiTA-CAR-T cells in vitro were evaluated in response to antigenic stimulations under hypoxic or normoxic conditions. The safety of HiTA-CAR-T cells was profiled in a mouse model for its on-target toxicity to normal liver and other tissues, and antitumor efficacy in vivo was monitored in murine xenograft models. RESULTS: Our results showed that HiTA-CAR-T cells are highly restricted to hypoxia for their CAR expression, activation and cytotoxicity to tumor cells in vitro. In a mouse model in vivo, HiTA-CAR-T cells targeting Her2 antigen showed undetectable CAR expression in all different normoxic tissues including human Her2-expresing liver, accordingly, no liver and systemic toxicity were observed; In contrast, regular CAR-T cells targeting Her2 displayed significant toxicity on human Her2-expression liver. Importantly, HiTA-CAR-T cells were able to achieve significant tumor suppression in murine xenograft models. CONCLUSION: Our HiTA system showed a remarkable improvement in hypoxia-restricted transgene expression in comparison with currently available systems. HiTA-CAR-T cells presented significant antitumor activities in absence of any significant liver or systemic toxicity in vivo. This approach could be also applied to design CAR-T cell targeting other tumor antigens.


Subject(s)
Cell Hypoxia/genetics , Gene Amplification/genetics , Immunotherapy/methods , Neoplasms/genetics , Receptors, Chimeric Antigen/metabolism , Animals , Cell Line, Tumor , Disease Models, Animal , Humans , Mice
8.
Cell Rep ; 28(7): 1758-1772.e4, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31412245

ABSTRACT

Following infection, inflammatory cues upregulate core transcriptional programs to establish pathogen-specific protection. In viral infections, T follicular helper (TFH) cells express the prototypical T helper 1 transcription factor T-bet. Several studies have demonstrated essential but conflicting roles for T-bet in TFH biology. Understanding the basis of this controversy is crucial, as modulation of T-bet expression instructs TFH differentiation and ultimately protective antibody responses. Comparing influenza and LCMV viral infections, we demonstrate that the role of T-bet is contingent on the environmental setting of TFH differentiation, IL-2 signaling, and T cell competition. Furthermore, we demonstrate that T-bet expression by either TFH or GC B cells independently drives antibody isotype class switching. Specifically, T cell-specific loss of T-bet promotes IgG1, whereas B cell-specific loss of T-bet inhibits IgG2a/c switching. Combined, this work highlights that the context-dependent induction of T-bet instructs the development of protective, neutralizing antibodies following viral infection or vaccination.


Subject(s)
Antibody Formation/immunology , Cell Differentiation , Germinal Center/immunology , Lymphocytic choriomeningitis virus/immunology , Orthomyxoviridae/immunology , T-Box Domain Proteins/physiology , T-Lymphocytes, Helper-Inducer/cytology , Animals , Antibodies, Viral/immunology , Arenaviridae Infections/immunology , Arenaviridae Infections/metabolism , Arenaviridae Infections/virology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , B-Lymphocytes/virology , Female , Germinal Center/metabolism , Germinal Center/virology , Immunoglobulin G/metabolism , Lymphocyte Activation , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/metabolism , Lymphocytic Choriomeningitis/virology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Signal Transduction , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...