Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Gut Pathog ; 16(1): 35, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972976

ABSTRACT

An increasing number of studies have shown that the consumption of soybeans and soybeans products is beneficial to human health, and the biological activity of soy products may be attributed to the presence of Soy Isoflavones (SI) in soybeans. In the intestinal tracts of humans and animals, certain specific bacteria can metabolize soy isoflavones into equol. Equol has a similar chemical structure to endogenous estradiol in the human body, which can bind with estrogen receptors and exert weak estrogen effects. Therefore, equol plays an important role in the occurrence and development of a variety of hormone-dependent malignancies such as breast cancer and prostate cancer. Despite the numerous health benefits of equol for humans, only 30-50% of the population can metabolize soy isoflavones into equol, with individual variation in gut microbiota being the main reason. This article provides an overview of the relevant gut microbiota involved in the synthesis of equol and its anti-tumor effects in various types of cancer. It also summarizes the molecular mechanisms underlying its anti-tumor properties, aiming to provide a more reliable theoretical basis for the rational utilization of equol in the field of cancer treatment.

2.
Mol Biotechnol ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38858301

ABSTRACT

Late-onset hypogonadism (LOH) is an age-related syndrome characterized by deficiency of serum testosterone produced by Leydig cells. Previous evidence suggested that microRNA (miR)-361-3p can serve as a promising biomarker for LOH. Nonetheless, its detailed function and molecular mechanism in LOH remain unclarified. The 24-month-old male mice were selected as an animal LOH model, and mouse Leydig cell line TM3 was stimulated with H2O2. ELISA was employed for testosterone level evaluation. Hematoxylin-eosin staining was implemented for histologic analysis of mouse testicular tissues. Western blotting and RT-qPCR were utilized for evaluating molecular protein and RNA expression, respectively. Functional experiments were conducted to test miR-361-5p roles. Luciferase reporter assay was for verifying the interaction between miR-361-5p and protein inhibitor of activated STAT 1 (PIAS1). miR-361-5p displayed a decreased level in the testes of LOH mice. Overexpressing miR-361-5p attenuated Leydig cell loss in the testis and elevated serum and intratesticular testosterone levels in LOH mice. H2O2 stimulation impaired TM3 cell viability, proliferation and intracellular testosterone production and enhanced cell apoptosis. miR-361-5p targeted PIAS1 in TM3 cell. PIAS1 upregulation counteracted miR-361-5p overexpression-mediated alleviation of cell apoptosis and elevation of testosterone synthesis in H2O2-stimualetd TM3 cells. miR-361-5p ameliorates LOH progression by increasing testosterone production and alleviate Leydig cell apoptosis via downregulation of PIAS1.

3.
Patient Prefer Adherence ; 18: 1257-1269, 2024.
Article in English | MEDLINE | ID: mdl-38911589

ABSTRACT

Purpose: Patients with recurrent urinary tract infections face complex management challenges. Fecal microbiota transplantation is a superior treatment for chronic infectious diseases, but limited patient knowledge affects treatment decisions. This study aims to identify factors associated with hesitancy towards fecal microbiota transplantation among patients with recurrent urinary tract infections, to help physicians and nurses in providing accurate and useful information to patients. Patients and Methods: A descriptive qualitative approach was employed, utilizing semi-structured interviews conducted with patients experiencing recurrent urinary tract infections who expressed hesitancy towards fecal microbiota transplantation. The interviews took place between September 2021 and December 2022. Thematic analysis was conducted on the semi-structured interviews to identify perceived facilitators and barriers associated with fecal microbiota transplantation. Results: The analysis included interviews with thirty adult female patients with recurrent urinary tract infections. Four facilitators influencing patients' decision-making regarding fecal microbiota transplantation were identified: (1) the motivating role of hope and expectations for active patient participation; (2) the influence of healthcare providers, as well as family members and friends on patients' decisions to pursue fecal microbiota transplantation; (3) the patients' perception of fecal microbiota transplantation as a low-risk treatment option; and (4) the dedication to the advancement of medical treatments. In contrast, two primary barriers to accepting fecal microbiota transplantation were identified: (1) that conventional treatment controls disease activity, while fecal microbiota transplantation effects remain uncertain; and (2) that safety concerns surrounding fecal microbiota transplantation. Conclusion: Comprehensive information about fecal microbiota transplantation, including donor selection, sample processing, the procedure, and potential discomfort, is essential for patients and families to make informed treatment decisions. Registration: CHiCTR2100048970.

4.
Psychol Res Behav Manag ; 17: 2465-2476, 2024.
Article in English | MEDLINE | ID: mdl-38912162

ABSTRACT

Aim: This study aims to explore the psychological reactions of medical students during the pandemic. Design: A qualitative study. Methods: A purposive sampling technique was employed, and a qualitative approach was adopted. Semi-structured questionnaires were utilized, and online interviews were conducted. Forty medical students were selected as participants for the interviews. The interview data were analyzed using Colaizzi's seven-step analysis method. Results: The study identified five themes related to the psychological reactions of medical students during the pandemic. Firstly, COVID-19's influence on medical careers was characterized by increased interest and determination in pursuing medical professions, heightened admiration for frontline workers, reinforced commitment to a medical career due to the pandemic, and recognition of the significance of medical education. Secondly, challenges and concerns in medical career pursuit were identified, including negative sentiments towards medical careers during COVID-19 and hesitations and concerns about entering the medical field amidst the pandemic. Thirdly, the impact on mental well-being encompassed diverse anxieties expressed by participants regarding control, transmission, treatment, and intentional spreading of the virus. Participants experienced an emotional progression from calmness to fear and anxiety, with heightened anxiety when relatives or acquaintances contracted COVID-19. Academic delays also contributed to anxiety among medical students. Fourthly, changes in behaviors and mindset were observed, including altered behaviors and mindset in response to the pandemic, as well as increased attention to personal hygiene and disease prevention measures. Lastly, expectations of medical students from government, public, and parents were explored. Conclusion: Understanding the psychological reactions of medical students during public health emergencies is crucial for their well-being and professional development. The findings have implications for medical education and the development of strategies to enhance the psychological well-being of medical students during similar crises.

5.
Biomed Pharmacother ; 177: 117031, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38925016

ABSTRACT

An expanding body of research indicates a correlation between the gut microbiota and various diseases. Metabolites produced by the gut microbiota act as mediators between the gut microbiota and the host, interacting with multiple systems in the human body to regulate physiological or pathological functions. However, further investigation is still required to elucidate the underlying mechanisms. One such metabolite involved in choline metabolism by gut microbes is trimethylamine (TMA), which can traverse the intestinal epithelial barrier and enter the bloodstream, ultimately reaching the liver where it undergoes oxidation catalyzed by flavin-containing monooxygenase 3 (FMO3) to form trimethylamine N-oxide (TMAO). While some TMAO is eliminated through renal excretion, remaining amounts circulate in the bloodstream, leading to systemic inflammation, endoplasmic reticulum (ER) stress, mitochondrial stress, and disruption of normal physiological functions in humans. As a representative microbial metabolite originating from the gut, TMAO has significant potential both as a biomarker for monitoring disease occurrence and progression and for tailoring personalized treatment strategies for patients. This review provides an extensive overview of TMAO sources and its metabolism in human blood, as well as its impact on several major human diseases. Additionally, we explore the latest research areas related to TMAO along with future directions.

6.
BJU Int ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890150

ABSTRACT

OBJECTIVE: To comprehensively review and critically assess the literature on microbiota differences between patients with interstitial cystitis (IC)/bladder pain syndrome (BPS) and normal controls and to provide clinical practice guidelines. MATERIALS AND METHODS: In this systematic review, we evaluated previous research on microbiota disparities between IC/BPS and normal controls, as well as distinctions among IC/BPS subgroups. A comprehensive literature search was conducted across PubMed/MEDLINE, EMBASE, Web of Science, and the Cochrane Central Register of Controlled Trials. Relevant studies were shortlisted based on predetermined inclusion and exclusion criteria, followed by quality assessment. The primary focus was identifying specific taxonomic variations among these cohorts. RESULTS: A total of 12 studies met the selection criteria. Discrepancies were adjudicated by a third reviewer. The Newcastle-Ottawa Scale was used to assess study quality. Predominantly, the studies focused on disparities in urine microbiota between IC/BPS patients and normal controls, with one study examining gut microbiota differences between the groups, and two studies exploring vaginal microbiota distinctions. Unfortunately, analyses of discrepancies in other microbiota were limited. Our findings revealed evidence of distinct bacterial abundance variations, particularly involving Lactobacillus, alongside variations in specific metabolites among IC/BPS patients compared to controls. CONCLUSIONS: Currently, there is evidence suggesting significant variations in the diversity and species composition of the urinary microbiota between individuals diagnosed with IC/BPS and control groups. In the foreseeable future, urologists should consider urine microbiota dysbiosis as a potential aetiology for IC, with potential clinical implications for diagnosis and treatment.

7.
Heliyon ; 10(7): e29271, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38623219

ABSTRACT

Low fertilization rate (LFR) and total fertilization failure (TFF) are often encountered in routine in vitro fertilization (IVF) procedure. To solve this problem, multivariate analyses on the relationship between male factors and in vitro fertilization rate were performed, and a nomogram for prediction of LFR was constructed. This retrospective study contained 2011 couples who received IVF treatment from January 2017 to December 2021. Man factors and in vitro fertilization rate were collected. Among these couples, 1347 cases had in vitro fertilization rates ≥30 % (control group), and 664 cases had in vitro fertilization rates <30 % (LFR group). Univariate analyses of male factors found that between the two groups there were significant differences (p < 0.05) in sperm progressive motility (SPR), sperm concentration (SC), total sperm number, normal sperm morphology rate (NSMR), DNA fragmentation index (DFI), sperm acrosin activity (SAA) and the clinical diagnosis of primary or secondary infertility. Multivariate logistic regression analyses showed that SPR, SAA, and SC were independent risk factors for LFR. An algorithm and a correspondent nomogram for predicting high LFR risk were constructed using data from the training cohort. The LFR nomogram exhibited an excellent discrimination power and a high fitting degree in both the training cohort (AUC = 0.90, 95 % CI: 0.88-0.92), (H-L: x2 = 5.43, p = 0.71) and validation cohort (AUC = 0.89, 95 % CI:0.87-0.92), (H-L: x2 = 7.85, p = 0.45), respectively. The decision curve analysis (DCA) demonstrated a high efficiency of the LFR nomogram for clinical utility. SPR, SAA, and SC are independent risk factors for LFR. The LFR nomogram established based on these factors could be a useful tool to predict high risk of LFR, and patients with high risk of LFR can be guided to direct ICSI procedure. Clinical application of the LFR nomogram may increase the in vitro fertilization rate by facilitating the decision making in IVF service.

8.
Sci Rep ; 14(1): 9570, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671021

ABSTRACT

Cuproptosis-related genes (CRGs) are important for tumor development. However, the functions of CRGs across cancers remain obscure. We performed a pan-cancer investigation to reveal the roles of CRGs across cancers. In an analysis of 26 cancers, 12 CRGs were differentially expressed, and those CRGs were found to have prognostic value across different cancer types. The expression of CRGs exhibited varied among tumors of 6 immune subtypes and were significantly correlated with the 16 sensitivities of drugs. The expression of CRGs were highly correlated with immunological subtype and tumor microenvironment (TME) of prostate cancer. We also established CRGs-related prognostic signatures that closely correlated with prognosis and drug sensitivity of prostate cancer patients. Single-cell RNA-seq revealed that several CRGs were enriched in the cancer cells. Finally, an in vitro experiment showed that elesclomol, a cuproptosis inducer, targets ferredoxin 1 and suppress cell viability in prostate cancer cells. In conclusion, we carried out a comprehensive investigation for determining CRGs in differential expression, prognosis, immunological subtype, TME, and cancer treatment sensitivity across 26 malignancies; and validated the results in prostate cancer. Our research improves pan-cancer knowledge of CRGs and identifies more effective immunotherapy strategies.


Subject(s)
Gene Expression Regulation, Neoplastic , Prostatic Neoplasms , Tumor Microenvironment , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prognosis , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Biomarkers, Tumor/genetics , Cell Line, Tumor , Gene Expression Profiling , Drug Resistance, Neoplasm/genetics
9.
Sci Adv ; 10(14): eadm7098, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38569039

ABSTRACT

Histopathological heterogeneity is a hallmark of prostate cancer (PCa). Using spatial and parallel single-nucleus transcriptomics, we report an androgen receptor (AR)-positive but neuroendocrine-null primary PCa subtype with morphologic and molecular characteristics of small cell carcinoma. Such small cell-like PCa (SCLPC) is clinically aggressive with low AR, but high stemness and proliferation, activity. Molecular characterization prioritizes protein translation, represented by up-regulation of many ribosomal protein genes, and SP1, a transcriptional factor that drives SCLPC phenotype and overexpresses in castration-resistant PCa (CRPC), as two potential therapeutic targets in AR-indifferent CRPC. An SP1-specific inhibitor, plicamycin, effectively suppresses CRPC growth in vivo. Homoharringtonine, a Food And Drug Administration-approved translation elongation inhibitor, impedes CRPC progression in preclinical models and patients with CRPC. We construct an SCLPC-specific signature capable of stratifying patients for drug selectivity. Our studies reveal the existence of SCLPC in admixed PCa pathology, which may mediate tumor relapse, and establish SP1 and translation elongation as actionable therapeutic targets for CRPC.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Neoplasm Recurrence, Local , Transcription Factors/metabolism , Protein Biosynthesis , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
10.
Mol Med Rep ; 29(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38426535

ABSTRACT

Following the publication of this paper, it was drawn to the Editor's attention by a concerned reader that the cellular morphological data in Fig. 1C, the immunofluorescence data shown in Fig. 1E, and certain of the scratch­wound assay data shown in Fig. 2A were strikingly similar to data appearing in different form in other articles written by different authors at different research institutes that had already been published. Owing to the fact that the contentious data in the above article had already been published prior to its submission to Molecular Medicine Reports, the Editor has decided that this paper should be retracted from the Journal. The authors were asked for an explanation to account for these concerns, but the Editorial Office did not receive a reply. The Editor apologizes to the readership for any inconvenience caused. [Molecular Medicine Reports 18: 308­314, 2018; DOI: 10.3892/mmr.2018.9005].

11.
Urol Int ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38513631

ABSTRACT

INTRODUCTION: To present the surgical technique and clinical outcomes of modified ileal conduit for pelvic lipomatosis (PL). METHODS: From 2020 to 2022, we prospectively enrolled 9 patients with PL undergoing modified ileal conduit. The patient characteristics, perioperative variables, and follow-up outcomes as well as the description of surgical technique were reported. RESULTS: All 9 patients successfully completed the operation. Two patients had perioperative complications of Clavien-Dindo grade I. The mean operation time and bleeding volumes were 253±51.4 min and 238.9±196.9 ml, with a mean postoperative follow-up time of 13.0±5.6 months. The postoperative 3-month and 1-year creatinine values were significantly decreased versus the preoperative (P=0.006 and P=0.024). The postoperative 3-month and 1-year eGFR values were significantly increased comapred with those before operation (P=0.0002 and P=0.018). The separation value of left renal pelvis collection system after operation were significantly reduced compared with preoperative evaluation (P=0.023 at 3 month and P=0.042 at 1 year) and so was the right side (P=0.019 and P=0.023). CONCLUSION: Modified ileal conduit is safe and feasible for PL. A large sample cohort with long-term follow-up is needed to evaluate the clinical outcomes of PL.

12.
PeerJ ; 12: e16920, 2024.
Article in English | MEDLINE | ID: mdl-38426133

ABSTRACT

Objectives: Type 2 diabetes mellitus (T2DM) commonly complicates kidney stone disease (KSD). Our objective is to investigate the variations in the urinary microbiota between individuals with KSD alone and those with KSD plus T2DM. This exploration could have implications for disease diagnosis and treatment strategies. Methods: During lithotripsy, a ureterscope was employed, and 1 mL of urine was collected from the renal pelvis after bladder disinfection. Sequencing targeting the V3-V4 hypervariable region was performed using the 16S rRNA and Illumina Novaseq platform. Results: The Shannon index showed a significant decrease in the KSD plus T2DM group compared to the KSD-only group (false discovery rate = 0.041). Principal Coordinate Analysis (PCoA) demonstrated a distinct bacterial community in the KSD plus T2DM group compared to the KSD-only group (false discovery rate = 0.027). The abundance of Sphingomonas, Corynebacterium, and Lactobacillus was significantly higher in the KSD plus T2DM group than in the KSD-only group (false discovery rate < 0.05). Furthermore, Enhydrobacter, Chryseobacterium, and Allobaculum were positively correlated with fasting blood glucose and HbA1c values (P < 0.05). Conclusions: The urinary microbiota in the renal pelvis exhibits differences between patients with KSD plus T2DM and those with KSD alone. Further studies employing animal models are necessary to validate these distinctions, potentially paving the way for therapeutic developments based on the urinary microbiota.


Subject(s)
Diabetes Mellitus, Type 2 , Kidney Calculi , Microbiota , Humans , Diabetes Mellitus, Type 2/complications , RNA, Ribosomal, 16S/genetics , Kidney Calculi/genetics , Bacteria
13.
Sci Rep ; 14(1): 4896, 2024 02 28.
Article in English | MEDLINE | ID: mdl-38418830

ABSTRACT

This work prepared and investigated the impact of carboxymethyl chitosan nanoparticles (MC-NPs) on the proliferative capability of keloid fibroblasts (KFBs) while analyzing the mechanistic roles of miR-214 and adenosine A2A receptor (A2AR) in fibroblasts within hypertrophic scars. MC-NPs were synthesized through ion cross-linking, were characterized using transmission electron microscopy (TEM) and laser particle size scattering. The influence of MC-NPs on the proliferation capacity of KFBs was assessed using the MTT method. Changes in the expression levels of miR-214 and A2AR in KFBs, normal skin fibroblasts (NFBs), hypertrophic scar tissue, and normal skin tissue were analyzed. KFBs were categorized into anti-miR-214, anti-miR-NC, miR-214 mimics, miR-NC, si-A2AR, si-con, anti-miR-214+ si-con, and anti-miR-214+ si-A2AR groups. Bioinformatics target prediction was conducted to explore the interaction between miR-214 and A2AR. Real-time quantitative PCR and immunoblotting (WB) were employed to detect the expression levels of miR-214, A2AR, apoptotic protein Bax, and TGF-ß in different cells. Cell counting kit-8 (CCK8) and flow cytometry were employed to assess cell proliferation activity and apoptosis. The results indicated that MC-NPs exhibited spherical particles with an average diameter of 236.47 ± 4.98 nm. The cell OD value in the MC-NPs group was lower than that in KFBs (P < 0.05). The mRNA levels of miR-214 in KFBs and hypertrophic scar tissue were lower than those in NFBs and normal tissue (P < 0.001), while the mRNA and protein levels of A2AR were significantly elevated (P < 0.05). Compared to the control group and anti-miR-NC, the anti-miR-214 group showed significantly increased cell OD values and Bcl-2 protein expression (P < 0.001), decreased levels of apoptotic gene Bax protein, TGF-ß gene mRNA, and protein expression (P < 0.001). Continuous complementary binding sites were identified between miR-214 and A2AR. Compared to the control group, the si-A2AR group exhibited a significant decrease in A2AR gene mRNA and protein expression levels (P < 0.001), reduced cell viability (P < 0.001), increased apoptosis rate (P < 0.001), and a significant elevation in TGF-ß protein expression (P < 0.001). miR-214 targetedly regulated the expression of A2AR, inducing changes in TGF-ß content, promoting the proliferation of keloid fibroblasts, and inhibiting cell apoptosis.


Subject(s)
Chitosan , Cicatrix, Hypertrophic , Keloid , MicroRNAs , Humans , Keloid/pathology , Cicatrix, Hypertrophic/metabolism , Receptor, Adenosine A2A/genetics , Receptor, Adenosine A2A/metabolism , Antagomirs/metabolism , Chitosan/pharmacology , Chitosan/metabolism , Cell Proliferation , Transforming Growth Factor beta/metabolism , Apoptosis , MicroRNAs/metabolism , Fibroblasts/metabolism , RNA, Messenger/metabolism
14.
Technol Cancer Res Treat ; 23: 15330338241233443, 2024.
Article in English | MEDLINE | ID: mdl-38409962

ABSTRACT

Purpose: Treatment of triple-negative breast cancer (TNBC) remains challenging. Intermittent fasting (IF) has emerged as a promising approach to improve metabolic health of various metabolic disorders. Clinical studies indicate IF is essential for TNBC progression. However, the molecular mechanisms underlying metabolic remodeling in regulating IF and TNBC progression are still unclear. Methods: In this study, we utilized a robust mouse model of TNBC and exposed subjects to a high-fat diet (HFD) with IF to explore its impact on the metabolic reprogramming linked to cancer progression. To identify crucial serum metabolites and signaling events, we utilized targeted metabolomics and RNA sequencing (RNA-seq). Furthermore, we conducted immunoblotting, real-time quantitative polymerase chain reaction (RT-qPCR), cell migration assays, lentivirus-mediated Mmp9 overexpression, and Mmp9 inhibitor experiments to elucidate the role of decanoylcarnitine/Mmp9 in TNBC cell migration. Results: Our observations indicate that IF exerts notable inhibitory effects on both the proliferation and cancer metastasis. Utilizing targeted metabolomics and RNA-seq, we initially identified pivotal serum metabolites and signaling events in the progression of TNBC. Among the 349 serum metabolites identified, decanoylcarnitine was picked out to inhibit TNBC cell proliferation and migration. RNA-seq analysis of TNBC cells treated with decanoylcarnitine revealed its suppressive effects on extracellular matrix-related protein components, with a notable reduction observed in Mmp9. Further investigations confirmed that decanoylcarnitine could inhibit Mmp9 expression in TNBC cells, primary tumors, lung, and liver metastasis tissues. Mmp9 overexpression abolished the inhibitory effect of decanoylcarnitine on cell migration. Conclusion: This study pioneers the exploration of IF intervention and the role of decanoylcarnitine/Mmp9 in the progression of TNBC in obese mice, enhancing our comprehension of the potential roles of various dietary patterns in the process of cancer treatment.


Subject(s)
Carnitine/analogs & derivatives , Triple Negative Breast Neoplasms , Humans , Animals , Mice , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Mice, Obese , Cell Line, Tumor , Intermittent Fasting , Obesity/drug therapy , Obesity/genetics , Cell Proliferation , Cell Movement , Gene Expression Regulation, Neoplastic
15.
Adv Sci (Weinh) ; 11(9): e2304939, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38115765

ABSTRACT

Treatment of castration-resistant prostate cancer (CRPC) is a long-standing clinical challenge. Traditionally, CRPC drugs work by either reducing dihydrotestosterone biosynthesis or blocking androgen receptor (AR) signaling. Here it is demonstrated that AR inhibitor treatment gives rise to a drug-tolerant persister (DTP) state. The thioredoxin/peroxiredoxin pathway is up-regulated in DTP cells. Peroxiredoxin 5 (PRDX5) promotes AR inhibitor resistance and CRPC development. Inhibition of PRDX5 suppresses DTP cell proliferation in culture, dampens CRPC development in animal models, and stabilizes PSA progression and metastatic lesions in patients. Therefore, the study provides a novel mechanism and potential target for the management of castration-resistant prostate cancer.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Animals , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Receptors, Androgen/genetics , Peroxiredoxins/metabolism , Signal Transduction
17.
Cancer Lett ; 579: 216464, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37879429

ABSTRACT

The suppressor of variegation enhancer of zeste-trithorax (SET) domain methyltransferases have been reported to function as key regulators in multiple tumor types by catalyzing histone lysine methylation. Nevertheless, our understanding on the role of these lysine methyltransferases, including SETD4, in prostate cancer (PCa) remains limited. Hence, the specific role of SETD4 in PCa was investigated in this study. The expression of SETD4 in PCa cells and tissue samples was downregulated in PCa cells and tissue specimens, and decreased SETD4 expression led to inferior clinicopathological characteristics in patients with PCa. knockdown of SETD4 facilitated the proliferation of PCa cells and accelerated cell cycle progression. Mechanistically, SETD4 repressed NUPR1 transcription by methylating H3K27 to generate H3K27me3, subsequently inactivated Akt pathway and impeded the tumorigenesis of PCa. Our results highlight that SETD4 prevents the development of PCa by catalyzing the methylation of H3K27 and suppressing NUPR1 transcription, subsequently inactivating the Akt signaling pathway. The findings suggest the potential application of SETD4 in PCa prognosis and therapeutics.


Subject(s)
Histones , Prostatic Neoplasms , Humans , Male , Cell Cycle Checkpoints/genetics , Cell Line, Tumor , Cell Proliferation , Histones/genetics , Histones/metabolism , Lysine/metabolism , Methyltransferases/metabolism , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt/metabolism
18.
Aging (Albany NY) ; 15(19): 10168-10192, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37788005

ABSTRACT

BACKGROUND: The role of obesity related genes (ORGs) in the immune checkpoint inhibitors (ICIs) treatment of prostate adenocarcinoma (PRAD) has not yet been proved by research. METHODS: We comprehensively evaluated the ORGs patterns in PRAD based on tumor microenvironment (TME) phenotypes and immunotherapy efficacies. Then we constructed a ORGs risk score for prognosis and a ORGs signature for accurate prediction of TME phenotype and immunotherapy efficacy in order to evaluate individual patients. RESULTS: Two distinct ORGs patterns were generated. The two ORGs patterns were consistent with inflammatory and non-inflammatory TME phenotypes. ORGs patterns had an important role for predicting immunotherapy efficacies. Next, we constructed a ORGs risk score for predicting each patient's prognosis with high performance in TCGA-PRAD. The ORGs risk score could be well verified in the external cohorts including GSE70769 and GSE21034. Then, we developed a ORGs signature and found it was significantly positively correlated with tumor-infiltrating lymphocytes in TCGA-PRAD. We found that each patient in the high-risk ORGs signature group represented a non-inflamed TME phenotype on the single cell level. The patients with high ORGs signature had more sensitivity to immunotherapy. And those ORGs were verified. CONCLUSIONS: ORGs pattern depicts different TME phenotypes in PRAD. The ORGs risk score and ORGs signature have an important role for predicting prognosis and immunotherapy efficacies.


Subject(s)
Adenocarcinoma , Prostatic Neoplasms , Male , Humans , Prostate , Obesity/genetics , Risk Factors , Phenotype , Prostatic Neoplasms/genetics , Tumor Microenvironment/genetics , Adenocarcinoma/genetics , Prognosis
19.
Comput Struct Biotechnol J ; 21: 4134-4148, 2023.
Article in English | MEDLINE | ID: mdl-37675289

ABSTRACT

Lens epithelium-derived growth factor (LEDGF/p75) is a reader of epigenetic marks and a potential target for therapeutic intervention. Its involvement in human immunodeficiency virus (HIV) integration and the development of leukemia driven by MLL (also known as KMT2A) gene fusion make it an attractive candidate for drug development. However, exploration of LEDGF/p75 as an epigenetic reader of H3K36me3 in tumors is limited. Here, for the first time, we analyze the role of LEDGF/p75 in multiple cancers via multiple online databases and in vitro experiments. We used pancancer bulk sequencing data and online tools to analyze correlations of LEDGF/p75 with prognosis, genomic instability, DNA damage repair, prognostic alternative splicing, protein interactions, and tumor immunity. In summary, the present study identified that LEDGF/p75 may serve as a prognostic predictor for tumors such as adrenocortical carcinoma, kidney chromophobe, liver hepatocellular carcinoma, pancreatic adenocarcinoma, skin cutaneous melanoma, and clear cell renal cell carcinoma (ccRCC). In addition, in vitro experiments and gene microarray sequencing were performed to explore the function of LEDGF/p75 in ccRCC, providing new insights into the pathogenesis of the nonmutated SETD2 ccRCC subtype.

20.
Nutr Res ; 118: 29-40, 2023 10.
Article in English | MEDLINE | ID: mdl-37544230

ABSTRACT

Ferroptosis, a form of cell death mediated by lipid peroxidation, is implicated in various pathological processes. Although monounsaturated fatty acids (MUFAs) can inhibit ferroptotic lipid peroxidation, the underlying structural mechanism of this antagonistic effect remains poorly understood. We hypothesized that MUFAs with different structures (including chain length, conformation, and double bond position) may affect their regulatory effect on ferroptosis. In this study, 11 MUFAs with varying structures were screened to identify those with an inhibitory effect on ferroptosis. Results from 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide assays indicated that only exogenous MUFAs with cis-conformation and centered double bond could inhibit ferroptosis. Meanwhile, it was found that suppressing the expression of SCD1 and SCD5 genes could sensitize cells to ferroptosis indicating the protective role of endogenous MUFA against ferroptosis. Additionally, western blot analysis revealed that cis-MUFAs with centered double bond downregulated the protein levels of transferrin receptor 1. Flow cytometry confirmed that these MUFAs led to decreases in intracellular iron, reactive oxygen species, and lipid peroxides. It was also found that SCD1 inhibitor could enhance ferroptosis inducer-mediated tumor suppression both in vivo and in vitro. Overall, these findings shed light on the particular structural features of MUFAs that contribute to their ferroptosis-resistant properties and suggest the potential therapeutic relevance of natural MUFAs in a range of ferroptosis-related diseases.


Subject(s)
Fatty Acids, Monounsaturated , Ferroptosis , Fatty Acids, Monounsaturated/pharmacology , Down-Regulation , Cell Death , Receptors, Transferrin/metabolism , Fatty Acids/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...