Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 88(3): 035108, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28372424

ABSTRACT

Currently we are investigating the inclusion of organotin compounds in new polystyrene scintillator materials to improve full gamma-ray energy sensitivity. Accurate calibration of the relative light yield from the newly developed scintillators is crucial to assess merits of compounds and chemical processes used in the scintillators' development. The full energy gamma-ray peak in a measured gamma-ray spectrum is commonly used in calibrating the relative light yield. However, the Compton continuum in the newly developed plastic scintillators is measured with much better efficiency and statistics and is found to be the best spectral feature that can be exploited for expeditious calibration of the relative light yield. In this study, we present a spectral gain matching of measured and simulated spectra, using a spectrum rebinning technique, to determine the Compton edge in a measured Compton continuum for accurate relative light yield calibration. The Compton edges determined using this technique were found to be within 1.2% of their theoretical estimates.

2.
Phys Rev Lett ; 103(1): 017202, 2009 Jul 03.
Article in English | MEDLINE | ID: mdl-19659173

ABSTRACT

We present low temperature magnetometry measurements on a new Mn3 single-molecule magnet in which the quantum tunneling of magnetization (QTM) displays clear evidence for quantum mechanical selection rules. A QTM resonance appearing only at high temperatures demonstrates tunneling between excited states with spin projections differing by a multiple of three. This is dictated by the C3 molecular symmetry, which forbids pure tunneling from the lowest metastable state. Transverse field resonances are understood by correctly orienting the Jahn-Teller axes of the individual manganese ions and including transverse dipolar fields. These factors are likely to be important for QTM in all single-molecule magnets.

SELECTION OF CITATIONS
SEARCH DETAIL
...