Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Pestic Biochem Physiol ; 193: 105430, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37248008

ABSTRACT

Chlorantraniliprole (CAP) is widely used in pest control, and its environmental residues affect the disease resistance of non-target insect silkworms. Studies have demonstrated that changes in gut microbial communities of insects are associated with susceptibility to pathogens. In the present study, we examined the effects of CAP exposure on the immune system and gut microbial community structure of silkworms. The results showed that after 96 h of exposure to low-concentration CAP, the peritrophic matrix (PM) of silkworm larvae was disrupted, and pathogenic bacteria invaded hemolymph. The trehalase activity in the midgut was significantly decreased, while the activities of chitinase, ß-N-acetylglucosaminidase, and chitin deacetylase were increased considerably, resulting in decreased chitin content in PM. In addition, exposure to CAP reduced the expressions of key genes in the Toll, IMD, and JAK/STAT pathways, ultimately leading to the downregulation of antimicrobial peptides (AMPs) genes and alterations in the structure of the gut microbial community. Therefore, after infection with the conditional pathogen Enterobacter cloacae (E. cloacae), CAP-exposed individuals exhibited significantly lower body weight and higher mortality. These findings showed that exposure to low-concentration CAP impacted the biological defense system of silkworms, changed the gut microbial community structure, and increased silkworms' susceptibility to bacterial diseases. Collectively, these findings provided a new perspective for the safety evaluation of low-concentration CAP exposure in sericulture.


Subject(s)
Bacterial Infections , Bombyx , Animals , Larva , Chitin , Insect Proteins/genetics , Insect Proteins/metabolism
2.
Arch Insect Biochem Physiol ; 112(3): e21990, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36537163

ABSTRACT

Glyphosate is a widely used herbicide and crop desiccant. However, whether its extensive use has any effect on the species diversity of nontarget organisms is still unclear. In this study, we used the silkworm, Bombyx mori, as the research subject, and performed RNA sequencing to analyze the transcriptional profile of silkworm midgut after exposure to glyphosate at 2975.20 mg/L (a concentration commonly used at mulberry fields). A total of 125 significantly differentially expressed genes (DEGs) were detected in the midgut of glyphosate-exposed silkworm (q < 0.05), of which 53 were upregulated and 72 were downregulated. Gene ontology enrichment analysis showed that the DEGs were mainly enriched in biological process, cellular component, and molecular function. Kyoto encyclopedia of genes and genomes analysis showed that the differential genes were mainly related to oxidative stress, nutrient metabolism, and immune defense pathways, including oxidative stress-related Cat and Jafrac1, nutrient metabolism-related Fatp and Scpx, and immune-related CYP6AN2, UGT40B4, CTL11, serpin-2, and so forth. Experimental verification showed that glyphosate exposure led to a 4.35-fold increase in the mortality of silkworm after Beauveria bassiana infection, which might be caused by the decreased PO (phenoloxidase) activity and impaired immunity. These results provide evidence for the potential effects of residue glyphosate on the physiological functions of silkworm, and also provide a reference for the biosafety evaluation of glyphosate.


Subject(s)
Bombyx , Gene Expression Profiling , Animals , Gene Expression Profiling/methods , Bombyx/genetics , Transcription, Genetic , Immunity , Glyphosate
3.
Pestic Biochem Physiol ; 188: 105223, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36464330

ABSTRACT

Chlorantraniliprole (CAP) is widely used in the control of agricultural pests, and its residues can affect the formation of silkworm (Bombyx. mori) cocoon easily. To accurately evaluate the toxicity of CAP to silkworms and clarify the mechanism of its effect on silk gland function, we proposed a novel toxicity evaluation method based on the body weight changes after CAP exposure. We also analyzed the Ca2+-related ATPase activity, characterized energy metabolism and transcriptional changes about the autophagy key genes on the downstream signaling pathways. The results showed that after a low concentration of CAP exposed for 96 h, there were CAP residues in the silk glands of B. mori, the activities of Ca2+-ATPase and Ca2+-Mg2+-ATPase decreased significantly (P ≤ 0.01), and the activation of AMPK-related genes AMPK-α and AMPK-ß were up-regulated by 6.39 ± 0.02-fold and 12.33 ± 1.06-fold, respectively, reaching a significant level (P ≤ 0.01)). In addition, the autophagy-related genes Atg1, Atg6, Atg5, Atg7, and Atg8 downstream AMPK were significantly up-regulated at 96 h (P ≤ 0.05). The results of immunohistochemistry and protein expression assay for autophagy marker Atg8 further confirmed the occurrence of autophagy. Overall, our results indicate that CAP exposure leads to autophagy in the silk gland of B. mori and affects their physiological functions, which provides guidance for the evaluation of toxicity of low concentration environmental CAP residues to insects.


Subject(s)
Bombyx , Animals , AMP-Activated Protein Kinases/genetics , Autophagy , Adenosine Triphosphatases , Silk
4.
J Virol Methods ; 310: 114624, 2022 12.
Article in English | MEDLINE | ID: mdl-36165821

ABSTRACT

Here, we develop a simple, efficient, bacmid-based, selection marker-free method for gene deletion and editing in baculovirus genomes. Specifically, based on pFastbac1, a donor plasmid with long left and right homology arms but without a reporter was constructed for disrupting ie1, an essential baculovirus gene. Instead of ligating with a plasmid, the homology arms were introduced to the polyhedrin locus of BmNPV bacmid using the BmNPV bac-to-bac expression system. Two viruses generated from the modified bacmid and unmodified BmNPV bacmid were then used to co-infect BmN cells in order that recombination takes place at the ie1 locus between them. Finally, without multiple rounds of purification, total cellular DNA was isolated, transformed into Cacl2-treated competent DH10B cells, and then blue colonies were selected for PCR screening. Remarkably, the proportion of blue colonies containing ie1-disrupted bacmid was found to be around 7 %. Moreover, using primers flanking the homology arms further confirmed that all these positive recombinants were double crossovers. These findings indicate that our method is also capable of gene modification if inverse PCR or seamless cloning is used to construct the donor plasmid and sequencing is employed to select positive colonies.


Subject(s)
Baculoviridae , Bombyx , Animals , Baculoviridae/genetics , Gene Deletion , Calcium Chloride , DNA
5.
Arch Insect Biochem Physiol ; 111(2): e21919, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35637636

ABSTRACT

Glyphosate is an herbicide widely used worldwide, but whether it is safe to nontarget organisms is controversial. In this study, the lepidopteran model insect silkworm was used to investigate the effects of glyphosate residues. The LC50 (72 h) of glyphosate on silkworm was determined to be 14875.98 mg/L, and after exposure to glyphosate at 2975.20 mg/L (a concentration comparable to that used for weed control in mulberry fields), silkworm growth was inhibited by 9.00%, total cocoon weight was lowered by 10.53%, feed digestibility was decreased by 7.56%, and the activities of alpha-amylase and trypsin were reduced by 10.41% and 21.32%, respectively. Pathological analysis revealed that glyphosate exposure led to significantly damaged midgut, along with thinner basal layer, shedding microvilli, blurred cytoplasmic membrane, and appearance of vacuoles. Exposure to glyphosate also led to accumulation of peroxides in the intestinal tissue; the messenger RNA transcription of SOD, Cu/Zn-SOD, and Mn-SOD was all significantly upregulated by glyphosate treatment for 24 h, while CAT transcription was increased at 24, 48, and 72 h. The activity of SOD was increased significantly at 24 h, while significant activity changes were observed for CAT at 72 and 96 h. These results indicated that exposure to glyphosate caused oxidative stress in the midgut of silkworm and affected the midgut's physiological function. This study provides important insights in evaluating the impact of glyphosate residues in the environment on nontarget organisms.


Subject(s)
Bombyx , Animals , Digestive System/metabolism , Glycine/analogs & derivatives , Oxidative Stress , Superoxide Dismutase/metabolism , Glyphosate
6.
Front Physiol ; 13: 824203, 2022.
Article in English | MEDLINE | ID: mdl-35250625

ABSTRACT

The Tachinidae are natural enemies of many lepidopteran and coleopteran pests of crops, forests, and fruits. However, host-tachinid parasitoid interactions have been largely unexplored. In this study, we investigated the effects of tachinids on host biological traits, using Exorista japonica, a generalist parasitoid, and the silkworm Bombyx mori, its lepidopteran host, as models. We observed that E. japonica parasitoidism did not affect silkworm larval body weight gain and cocooning rate, whereas they caused shortened duration of molting from the final instar to the pupal stage, abnormal molting from larval to pupal stages, and a subsequent decrease in host emergence rate. Moreover, a decrease in juvenile hormone (JH) titer and an increase in 20-hydroxyecdysone (20E) titer in the hemolymph of parasitized silkworms occurred. The transcription of JH and 20E responsive genes was downregulated in mature parasitized hosts, but upregulated in parasitized prepupae while Fushi tarazu factor 1 (Ftz-f1), a nuclear receptor essential in larval ecdysis, showed dramatically reduced expression in parasitized hosts at both the mature and prepupal stages. Moreover, the transcriptional levels of BmFtz-f1 and its downstream target genes encoding cuticle proteins were downregulated in epidermis of parasitized hosts. Meanwhile, the content of trehalose was decreased in the hemolymph, while chitin content in the epidermis was increased in parasitized silkworm prepupae. These data reveal that the host may fine-tune JH and 20E synthesis to shorten developmental duration to combat established E. japonica infestation, while E. japonica silences BmFtz-f1 transcription to inhibit host pupation. This discovery highlights the novel target mechanism of tachinid parasitoids and provides new clues to host/tachinid parasitoid relationships.

7.
ACS Biomater Sci Eng ; 8(1): 100-108, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34918508

ABSTRACT

Silk is an important biological protein fiber, which has been widely developed and used in textile and biomedical fields due to its excellent mechanical properties and good biocompatibility. Strength is an important indicator that determines the value and use of silk. Although investigations have been made on the mechanical properties of silkworm silks and their dependence relationship with the microstructures, the variation of silk strength formed in the process of silkworm spinning has not been reported. By feeding the same strain of silkworms with mulberry leaves, mulberry leaves + artificial feed, and artificial feed, silks with three filament sizes were obtained, respectively. The tensile test results showed that the strength and filament size of silk are inversely proportional. The structure and fibrosis process of different-strength silks were analyzed. The results showed that, compared with ordinary silk, the ß-sheet and crystallinity content of high-strength silk is higher, indicating that its fibrosis process is more sufficient. We proposed that the stretched degree of silk protein determines its structure and properties. During the spinning process of individual silkworms, the secretion of silk protein is not stable, which will cause changes in the stretched degree. The measurement results of the intraindividual stretched degree and strength verified that the degree of stretch determines the strength of the silk. This study not only provides a deeper understanding of the properties of silk protein but also is of interest for the design and development of advanced biomimetic silk materials.


Subject(s)
Bombyx , Silk , Animals , Feeding Methods
8.
International Eye Science ; (12): 1365-1368, 2022.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-935014

ABSTRACT

AIM:To evaluate the application effect of artificial intelligence(AI)assisted diagnosis system in screening diabetic retinopathy(DR)in Yinchuan Community, Ningxia Hui Autonomous Region.METHODS:From July 2020 to July 2021, fundus photograph of 2 707 eyes from 1 358 diabetic patients with type 2 diabetes in two communities of Ningxia and Yinchuan were included in this study. The Eye Wisdom AI assisted screening and diagnosis system was used to analyze automatically and detect the characteristic changes of DR, such as hemorrhage, microaneurysms and retinal microvascular abnormalities. The results of fundus photograph were automatically graded according to the standard of DR international stage standard. The manual analysis group gave feedback after image interpretation, analyzed the sensitivity, specificity, misdiagnosis rate and missed diagnosis rate of the AI-assisted screening system for DR diagnosis, and compared the consistency between AI and manual analysis. Kappa consistency test was performed for the results of AI screening system and manual analysis.RESULTS:Compared with manual analysis, the sensitivity, specificity, missed diagnosis rate and misdiagnosis rate of AI were 91.84%, 99.06%, 8.16% and 0.94% respectively. The Kappa value of consistency analysis of the two diagnosis results was 0.817(P<0.001). Compared with manual analysis, the sensitivity and specificity of AI group to diagnose non-DR were 99.06% and 91.84% respectively. The sensitivity and specificity of mild NPDR were 85.36% and 98.52% respectively. The sensitivity and specificity of moderate NPDR were 81.53% and 98.55% respectively. The sensitivity and specificity of severe NPDR were 70% and 99.51% respectively. The sensitivity and specificity of PDR were 86.67% and 99.63% respectively. The Kappa value of the consistency analysis of DR staging diagnosis was 0.878(P<0.01).CONCLUSION: The AI remote screening system adopted in this study showed good consistency with the results of manual analysis, which can meet the needs of DR screening and provide a new effective prevention and treatment mode for DR patients in the community.

9.
Environ Pollut ; 289: 117866, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34343750

ABSTRACT

The neonicotinoid insecticide acetamiprid is widely applied for pest control in agriculture production, and its exposure often results in adverse effects on a non-target insect, Bombyx mori. However, only few studies have investigated the effects of exposure to sublethal doses of neonicotinoid insecticides on gut microbiota and susceptibility to pathogenic bacteria. In this study, we aimed to explore the possible mechanisms underlying the acetamiprid-induced compositional changes in gut microbiota of silkworm and reduced host resistance against detrimental microbes. This study indicated that sublethal dose of acetamiprid activated the dual oxidase-reactive oxygen species (Duox-ROS) system and induced ROS accumulation, leading to dysregulation of intestinal immune signaling pathways. The evenness and structure of bacterial community were altered. Moreover, after 96 h of exposure to sublethal dose of acetamiprid, several bacteria, such as Pseudomonas sp (Biotype A, DOP-1a, XW34) and Staphylococcus sp (RCB1054, RCB314, X302), invaded the silkworm hemolymph. The survival rate and bodyweight of the acetamiprid treated silkworm larvae inoculated with Enterobacter cloacae (E. cloacae) were significantly lower than the acetamiprid treatment group, suggesting that acetamiprid reduced silkworm resistance against pathogens. These findings indicated that acetamiprid disturbed gut microbial homeostasis of Bombyx mori, resulting in changes in gut microbial community and susceptibility to detrimental microbes.


Subject(s)
Bombyx , Animals , Bacteria , Homeostasis , Neonicotinoids/toxicity
10.
Arch Insect Biochem Physiol ; 107(4): e21827, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34173258

ABSTRACT

Silkworm (Bombyx mori) is an important economic insect and an attractive model system. A series of autophagy-related genes (Atgs) are involved in the autophagic process, and these Atgs have been proved to play important roles in the development. Atg7 stands at the hub of two ubiquitin-like systems involving Atg8 and Atg12 in the autophagic vesicle. In the present study, we cloned and characterized a BmAtg7 gene in Bombyx mori. The open reading frame (ORF) of BmAtg7 was 1908 bp in length, and it encoded a polypeptide of 635 amino acids. BmAtg7 was highly expressed in the posterior silk gland, fatbody, and epidermis. The expression profile of BmAtg7 in the fatbody showed an increasing tendency from day 1 of the 5th instar to the prepupal stage. After chlorantraniliprole (CAP) exposure, the transcriptional level of BmAtg7 was continuously decreased. After depletion of BmAtg7 by RNAi, the expressions of BmAtg7, BmAtg8, and BmEcr were all downregulated, while the expression of BmJHBP2 was upregulated. However, depletion of BmAtg7 did not prevent the metamorphosis of silkworm from larvae to pupae, while the occurrence of such process was delayed. After the 20-hydroxyecdysone (20E) treatment, the expression characteristics of these four genes (BmAtg7, BmAtg8, BmEcr and BmJHBP2) were contrary to the results after depletion of BmAtg7. Our results suggested that although CAP exposure could significantly inhibit the expression of BmAtg7 continuously, the changes of BmAtg7 was not the key factor in CAP-induced metamorphosis defects.


Subject(s)
Autophagy-Related Protein 7/genetics , Bombyx/genetics , Amino Acid Sequence , Animals , Autophagy-Related Protein 7/metabolism , Bombyx/metabolism , Cloning, Molecular , Ecdysterone , ortho-Aminobenzoates
11.
Pestic Biochem Physiol ; 174: 104824, 2021 May.
Article in English | MEDLINE | ID: mdl-33838717

ABSTRACT

Acetamiprid is a new type of nicotinic insecticide that is widely used in pest control. Its environmental residues may cause silkworm cocooning disorder. In this study, silkworms that received continuous feeding of low concentration acetamiprid (0.15 mg/L) showed significantly decreased silk gland index and cocooning rate. Gene expression profiling of posterior silk glands (PSGs) revealed that the differentially expressed genes were significantly enriched in oxidative stress-related signal pathways with significant up-regulation. The contents of both H2O2 and MDA were increased, along with significantly elevated SOD and CAT activities, all of which reached maximal values at 48 h when H2O2 and MDA's contents were 10.46 and 7.98 nmol/mgprot, respectively, and SOD and CAT activities were 5.51 U/mgprot and 33.48 U/gprot, respectively. The transcription levels of antioxidant enzyme-related genes SOD, Mn-SOD, CuZn-SOD, CAT, TPX and GPX were all up-regulated, indicating that exposure to low concentration acetamiprid led to antioxidant response in silkworm PSG. The key genes in the FoxO/CncC/Keap1 signaling pathway that regulates antioxidant enzyme activity, FoxO, CncC, Keap1, NQO1, HO-1 and sMaf were all up-regulated during the whole process of treatment, with maximal values being reached at 72 h with 2.91, 1.46, 1.82, 2.52, 2.32 and 4.01 times of increases, respectively. These results demonstrate that exposure to low concentration acetamiprid causes oxidative stress in silkworm PSG, which may be the cause of cocooning disorder in silkworm. Our study provides a reference for the safety evaluation of environmental residues of acetamiprid on non-target insects.


Subject(s)
Bombyx , Animals , Bombyx/genetics , Bombyx/metabolism , Growth and Development , Hydrogen Peroxide , Insect Proteins/genetics , Insect Proteins/metabolism , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2/metabolism , Neonicotinoids , Oxidative Stress , Silk
12.
Orthop Surg ; 12(6): 1947-1953, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33080108

ABSTRACT

OBJECTIVE: Spinal fusion is one of the most common surgical interventions for spine reconstruction. Despite the efforts to promote osteogenesis after spinal fusion, osteogenesis after spinal fusion remains a clinical challenge and new methods are still needed. The bone morphogenetic protein-2 (BMP-2) is a widely reported factor that can facilitate the osteogenesis in spinal fusion. In previous research, we found that the delivery of chitosan nanospheres could promote the effects of BMP-2 on osteogenic activity. The coralline hydroxyapatite (CHA) is one of the most frequently used implants in bone fusion. However, up to now no study has focused on the osteogenic efficacy of the CHA composite with recombinant human BMP-2 (rhBMP-2)-loaded chitosan nanospheres. This study aimed to investigate the effects of the CHA implant with rhBMP-2-loaded chitosan nanospheres on osteogenesis in spinal fusion. METHODS: The rhBMP-2-loaded microspheres and CHA composite (rhBMP-2 microspheres/CHA) were prepared and were used for implantation of the rats. All SD rats were divided into four groups: the rhBMP-2 microspheres/CHA composite group (containing 0.5 mg rhBMP-2), the rhBMP-2-loaded CHA (rhBMP-2/CHA) composite group (containing 0.5 mg rhBMP-2), the blank CHA group, and the negative control group. The microsphere morphology was scanned and analyzed using a scanning electron microscope. Micro-computed tomography examination and three-dimensional reconstruction were performed 4 weeks after the surgery. Hematoxylin and eosin staining was conducted for histological analysis. Both alkaline phosphatase (ALP) and calcium content were measured. RESULTS: The rhBMP-2-loaded CHA (rhBMP-2/CHA) composite was successfully prepared. Spherical regularity and a smooth and unwrinkled surface of the spheres were observed in all chitosan (CS)/rhBMP-2 microspheres. No side effects, infections, or abnormal behaviors were found in the animals. After 4 weeks of surgery, obvious new bone formation and bone fusion could be observed around the implant in both the rhBMP-2 microspheres/CHA composite group and the rhBMP-2/CHA composite group. No ectopic osteogenesis was found in the vertebral canal or other muscle tissues. After 4 weeks of implantation, in both the rhBMP-2 microspheres/CHA composite group and the rhBMP-2/CHA composite group, osteoid tissues could be found, and bone cells, bone marrow, and trabecular bone turned into mature sclerotin, obvious bone tissue formation could be also seen. Both ALP activity and calcium content in the rhBMP-2 microspheres/CHA composite group (6.52 ± 0.50 kat/g and 17.54 ± 2.49 µg/mg) were significantly higher than in all other groups. CONCLUSION: The composite with rhBMP-2-loaded CS nanospheres could enhance osteogenic efficacy and increase the ALP activity and calcium content. These results might provide a novel method for osteogenesis in spinal fusion and offer new insight into the role of BMP-2 in osteogenesis.


Subject(s)
Bone Morphogenetic Protein 2/pharmacology , Ceramics/pharmacology , Chitosan/pharmacology , Hydroxyapatites/pharmacology , Osteogenesis/physiology , Spinal Fusion/methods , Spine/surgery , Transforming Growth Factor beta/pharmacology , Animals , Biocompatible Materials , Drug Implants , Humans , Male , Nanospheres , Rats , Rats, Sprague-Dawley , Recombinant Proteins/pharmacology
13.
Acta Pharmaceutica Sinica ; (12): 599-604, 2011.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-348912

ABSTRACT

Doxorubicin loaded micelles were prepared by film-hydration method using stearyl sulfadiazine (SA-SD) which is pH sensitive, methoxy (polyethylene glycol)-2000-1, 2-dioleoyl-sn-glycero-3-phosphoethanolamine (mPEG-DOPE) and transactivator of transcription (TAT) peptide conjugated PEG-DOPE. Mean diameter of the pH-sensitive micelles was about 20 nm with a (99.1 +/- 2.1) % drug entrapment efficiency at pH 7.4. Flow cytometry studies revealed that the simple TAT micelles was taken up rapidly at the same level at pH 6.8 and pH 7.4. However, the pH-sensitive micelles entered the tumor cell less at pH 7.4 and significantly increase at pH 6.8. After 1 h incubation at pH 6.8, the amount of the pH-sensitive micelles taken up by cancer cell 4T1 was almost similar to simple TAT micelles. The confocal microscopy indicated that the pH-sensitive micelles entered the 4T1 cells at pH 6.8 more than at pH 7.4. It was indicated that the pH-sensitive micelles could shield TAT peptide at normal pH 7.4 and deshield it at pH 6.8. Hence, TAT peptides lead the drug-loaded micelles into the tumor cells and killed them selectively. The pH-sensitive micelle may provide a novel strategy for design of cancer targeting drug delivery system.


Subject(s)
Animals , Female , Mice , Antibiotics, Antineoplastic , Chemistry , Cell Line, Tumor , Cell-Penetrating Peptides , Chemistry , Doxorubicin , Chemistry , Drug Carriers , Drug Compounding , Drug Delivery Systems , Gene Products, tat , Chemistry , Hydrogen-Ion Concentration , Mammary Neoplasms, Experimental , Pathology , Micelles , Phosphatidylethanolamines , Chemistry , Polyethylene Glycols , Chemistry , Sulfadiazine , Chemistry
14.
Chinese Journal of Hepatology ; (12): 569-571, 2006.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-341299

ABSTRACT

<p><b>OBJECTIVE</b>To further study the binding character of hepatitis B surface antigen (HBsAg) and beta 2-glycoprotein I (beta2GP I) and to explore whether beta2GP I plays an important role in the hepatotropism of hepatitis B virus.</p><p><b>METHODS</b>Using Western blot technique, we observed the binding character of the HBsAg with reduced and non-reduced beta2GP I.</p><p><b>RESULTS</b>rHBsAgs with reduced and non-reduced beta2GP I showed identical binding activity.</p><p><b>CONCLUSIONS</b>The binding activity of HBsAg is dependent on tandem residues, but not on conformational structures of beta2GP I. There is a specific binding between HBV and beta2GP I, which may play an important role in HBV infection and is one of the reasons of hepatotropism of HBV.</p>


Subject(s)
Humans , Hepatitis B , Virology , Hepatitis B Surface Antigens , Metabolism , Hepatitis B virus , Virulence , Viral Envelope Proteins , Blood , beta 2-Glycoprotein I , Blood
15.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-674656

ABSTRACT

It is first time to use dextren T-40 oxidative method to conjugate anti-gastric cancer mono-colonal antibody(McAb)with anti-tumor medicines of daunorubicin(DNR)and methotrexate(MTX)together.Cytotoxicity of conjugates was measured by MTT method and ~3H-TdR incor-poration method respectively.Both sensitivity is similar.The results have showed that this conju-gate exhibited selective cytotoxicity on human gastric cancer cells in vitro.

SELECTION OF CITATIONS
SEARCH DETAIL
...