Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Front Pharmacol ; 10: 929, 2019.
Article in English | MEDLINE | ID: mdl-31507422

ABSTRACT

Intracellular Ca2+ overload, prolongation of the action potential duration (APD), and downregulation of inward rectifier potassium (IK1) channel are hallmarks of electrical remodeling in cardiac hypertrophy and heart failure (HF). We hypothesized that enhancement of IK1 currents is a compensation for IK1 deficit and a novel modulation for cardiac Ca2+ homeostasis and pathological remodeling. In adult Sprague-Dawley (SD) rats in vivo, cardiac hypertrophy was induced by isoproterenol (Iso) injection (i.p., 3 mg/kg/d) for 3, 10, and 30 days. Neonatal rat ventricular myocytes (NRVMs) were isolated from 1 to 3 days SD rat pups and treated with 1 µmol/L Iso for 24 h in vitro. The effects of zacopride, a selective IK1/Kir2.1 channel agonist, on cardiac remodeling/hypertrophy were observed in the settings of 15 µg/kg in vivo and 1 µmol/L in vitro. After exposing to Iso for 3 days and 10 days, rat hearts showed distinct concentric hypertrophy and fibrosis and enhanced pumping function (P < 0.01 or P < 0.05), then progressed to dilatation and dysfunction post 30 days. Compared with the age-matched control, cardiomyocytes exhibited higher cytosolic Ca2+ (P < 0.01 or P < 0.05) and lower SR Ca2+ content (P < 0.01 or P < 0.05) all through 3, 10, and 30 days of Iso infusion. The expressions of Kir2.1 and SERCA2 were downregulated, while p-CaMKII, p-RyR2, and cleaved caspase-3 were upregulated. Iso-induced electrophysiological abnormalities were also manifested with resting potential (RP) depolarization (P < 0.01), APD prolongation (P < 0.01) in adult cardiomyocytes, and calcium overload in cultured NRVMs (P < 0.01). Zacopride treatment effectively retarded myocardial hypertrophy and fibrosis, preserved the expression of Kir2.1 and some key players in Ca2+ homeostasis, normalized the RP (P < 0.05), and abbreviated APD (P < 0.01), thus lowered cytosolic [Ca2 +]i (P < 0.01 or P < 0.05). IK1channel blocker BaCl2 or chloroquine largely reversed the cardioprotection of zacopride. We conclude that cardiac electrical remodeling is concurrent with structural remodeling. By enhancing cardiac IK1, zacopride prevents Iso-induced electrical remodeling around intracellular Ca2+ overload, thereby attenuates cardiac structural disorder and dysfunction. Early electrical interventions may provide protection on cardiac remodeling.

2.
PLoS One ; 12(5): e0177600, 2017.
Article in English | MEDLINE | ID: mdl-28542320

ABSTRACT

Arrhythmogenesis in acute myocardial infarction (MI) is associated with depolarization of resting membraine potential (RMP) and decrease of inward rectifier potassium current (IK1) in cardiomyocytes. However, clinical anti-arrhythmic agents that primarily act on RMP by enhancing the IK1 channel are not currently available. We hypothesized that zacopride, a selective and moderate agonist of the IK1/Kir2.1 channels, prevents and cures acute ischemic arrhythmias. To test this viewpoint, adult Sprague-Dawley (SD) rats were subjected to MI by ligating the left main coronary artery. The antiarrhythmic effects of zacopride (i.v. infusion) were observed in the settings of pre-treatment (zacopride given 3 min prior to coronary occlusion), post-treatment (zacopride given 3 min after coronary occlusion) and therapeutic treatment (zacopride given 30 s after the onset of the first sustained ventricular tachycardia (VT)/ventricular fibrillation (VF) post MI). In all the three treatment modes, zacopride (15 µg/kg) inhibited MI-induced ventricular tachyarrhythmias, as shown by significant decreases in the premature ventricular contraction (PVC) and the duration and incidence of VT or VF. In Langendorff perfused rat hearts, the antiarrhythmic effect of 1 µmol/L zacopride were reversed by 1 µmol/L BaCl2, a blocker of IK1 channel. Patch clamp results in freshly isolated rat ventricular myocytes indicated that zacopride activated the IK1 channel and thereby reversed hypoxia-induced RMP depolarization and action potential duration (APD) prolongation. In addition, zacopride (1 µmol/L) suppressed hypoxia- or isoproterenol- induced delayed afterdepolarizations (DADs). In Kir2.x transfected Chinese hamster ovary (CHO) cells, zacopride activated the Kir2.1 homomeric channel but not the Kir2.2 or Kir2.3 channels. These results support our hypothesis that moderately enhancing IK1/Kir2.1 currents as by zacopride rescues ischemia- and hypoxia- induced RMP depolarization, and thereby prevents and cures acute ischemic arrhythmias. This study brings a new viewpoint to antiarrhythmic theories and provides a promising target for the treatment of acute ischemic arrhythmias.


Subject(s)
Arrhythmias, Cardiac/drug therapy , Arrhythmias, Cardiac/prevention & control , Benzamides/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Myocardial Ischemia/complications , Potassium Channels, Inwardly Rectifying/agonists , Action Potentials/drug effects , Acute Disease , Animals , Arrhythmias, Cardiac/complications , Arrhythmias, Cardiac/pathology , Benzamides/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , CHO Cells , Cell Hypoxia/drug effects , Cricetulus , Isoproterenol/pharmacology , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Rats , Rats, Sprague-Dawley
3.
J Cardiovasc Pharmacol ; 64(4): 345-56, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25286360

ABSTRACT

Activating IK1 channels is considered to be a promising antiarrhythmic strategy. Zacopride has been identified as a selective IK1 channel agonist and can suppress triggered arrhythmias. Whether this drug also exerts a beneficial effect on cardiac remodeling is unknown, and the present study sought to address this question. Cardiac remodeling was induced through coronary ligation-induced myocardial infarction (MI) in male Sprague-Dawley rats. Zacopride (15 µg/kg) was administered (intraperitoneally) daily for 28 days after MI to determine whether it could attenuate MI-induced cardiac remodeling. A 4-week treatment with zacopride attenuated post-MI cardiac remodeling, as shown by the reduced left ventricular end-diastolic dimension and left ventricular end-systolic dimension and the increased ejection fraction and fractional shortening in zacopride-treated animals compared with animals treated with vehicle (all P < 0.05). Furthermore, zacopride significantly decreased myocardial collagen deposition, cardiomyocyte hypertrophy, the plasma level of brain natriuretic peptide, and cardiomyocyte ultrastructural injury. Zacopride also upregulated the expression of the IK1 channel protein and downregulated the expression of phosphorylated p70S6 kinase (p-p70S6K) and mTOR. These beneficial effects of zacopride were partially abolished by the IK1 channel blocker chloroquine. We conclude that the activation of IK1 channel by zacopride attenuates post-MI cardiac remodeling by suppressing mTOR-p70S6 kinase signaling.


Subject(s)
Anti-Arrhythmia Agents/therapeutic use , Benzamides/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Myocardial Infarction/drug therapy , Potassium Channels, Inwardly Rectifying/agonists , Ventricular Remodeling/drug effects , Animals , Anti-Arrhythmia Agents/administration & dosage , Benzamides/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Chloroquine/blood , Chloroquine/pharmacology , Echocardiography , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Heart Ventricles/ultrastructure , Male , Microscopy, Electron, Transmission , Myocardial Infarction/diagnostic imaging , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/ultrastructure , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Rats, Sprague-Dawley
4.
Sheng Li Xue Bao ; 62(5): 407-14, 2010 Oct 25.
Article in English | MEDLINE | ID: mdl-20945042

ABSTRACT

Considering that α-1 repeat region may be involved in the ion binding and translocation of Na(+)-Ca(2+) exchanger (NCX), it is possible that the antibodies against NCX α-1 repeat may have a crucial action on NCX activity. The aim of the present study is to investigate the effect of antibody against α-1 repeat (117-137), designated as α-1(117-137), on NCX activity. The antibody against the synthesized α-1(117-137) was prepared and affinity-purified. Whole-cell patch clamp technique was used to study the change of Na(+)-Ca(2+) exchange current (I(Na/Ca)) in adult rat cardiomyocytes. To evaluate the functional specificity of this antibody, its effects on L-type Ca(2+) current (I(Ca,L)), voltage-gated Na(+) current (I(Na)) and delayed rectifier K(+) current (I(K)) were also observed. The amino acid sequences of α-1(117-137) in NCX and residues 1 076-1 096 within L-type Ca(2+) channel were compared using EMBOSS Pairwise Alignment Algorithms. The results showed that outward and inward I(Na/Ca) were decreased by the antibody against α-1(117-137) dose-dependently in the concentration range from 10 to 160 nmol/L, with IC(50) values of 18.9 nmol/L and 22.4 nmol/L, respectively. Meanwhile, the antibody also decreased I(Ca,L) in a concentration-dependent manner with IC(50) of 22.7 nmol/L. No obvious effects of the antibody on I(Na) and I(K) were observed. Moreover, comparison of the amino acid sequences showed there was 23.8% sequence similarity between NCX α-1(117-137) and residues 1 076-1 096 within L-type Ca(2+) channel. These results suggest that antibody against α-1(117-137) is a blocking antibody to NCX and can also decrease I(Ca,L) in a concentration-dependent manner, while it does not have obvious effects on I(Na) and I(K).


Subject(s)
Antibodies, Blocking/pharmacology , Calcium Channel Blockers/pharmacology , Calcium Channels, L-Type , Myocytes, Cardiac/metabolism , Sodium-Calcium Exchanger/antagonists & inhibitors , Amino Acid Sequence , Animals , Antibodies, Blocking/metabolism , Calcium Channels, L-Type/genetics , Calcium Channels, L-Type/immunology , Calcium Channels, L-Type/metabolism , Guinea Pigs , Membrane Potentials , Molecular Sequence Data , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Patch-Clamp Techniques , Rats , Rats, Wistar , Sodium-Calcium Exchanger/genetics , Sodium-Calcium Exchanger/immunology
5.
Acta Pharmacol Sin ; 29(10): 1175-80, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18817621

ABSTRACT

AIM: The aim of the present study was to investigate the effect of the antibody against alpha-2 repeat on Na+-Ca2+ exchanger (NCX) current (I(Na/Ca)). To evaluate the functional specificity of this antibody, its effects on L-type Ca2+ current (I(Ca,L)), voltage-gated Na+ current (I(Na)) and delayed rectifier K+ current (I(K)) were also observed. METHODS: The whole-cell patch-clamp technique was used in this study. RESULTS: The antibody against alpha-2 repeat augmented both the outward and inward Na+-Ca2+ exchanger current concentration-dependently, with EC(50) values of 27.9 nmol/L and 24.7 nmol/L, respectively. Meanwhile, the antibody could also increase I(Ca,L) in a concentration-dependent manner with the EC(50) of 33.6 nmol/L. Effects of the antibody on I(Na) and I(K) were not observed in the present study. CONCLUSION: The present results suggest that antibody against alpha-2 repeat is a stimulating antibody to NCX and could also increase I(Ca,L) in a concentration-dependent manner, but did not have an obvious effect on I(Na) and I(K).


Subject(s)
Antibodies, Blocking/pharmacology , Calcium/metabolism , Myocytes, Cardiac/drug effects , Sodium-Calcium Exchanger/genetics , Sodium-Calcium Exchanger/metabolism , Sodium/metabolism , Amino Acid Sequence , Animals , Electrophysiology , Molecular Sequence Data , Patch-Clamp Techniques , Rats , Rats, Wistar , Sodium-Calcium Exchanger/immunology
6.
Sheng Li Xue Bao ; 58(3): 225-31, 2006 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-16786106

ABSTRACT

Neuropeptide Y (NPY) co-exists with norepinephrine (NE) in sympathetic terminals, and is the most abundant neuropeptide in myocardium. Many studies have focused on the effects of NE on ion channels in cardiac myocytes and its physiological significance has been elucidated relatively profoundly. There have been few investigations, however, on the physiological significance of NPY in myocardium. The effects of NPY on L-type Ca2+ channel currents (I(Ca-L)) were evaluated in some studies and different results were presented, which might be attributed to the different species of animal tested and different methods used. It is necessary, therefore, to study the effects of NPY on ion channels in cardiac myocytes systematically and further to discuss the biological significance of their coexistence with NE in sympathetic terminals. The single ventricular myocytes from adult rat or guinea pig (only for measuring I(K)) were prepared using enzymatic dispersion. I(Ca-L), I(to), I(Na/Ca), I(Na) and I(K) in the cellular membrane were observed using whole cell voltage-clamp recording. In the present study, NPY from 1.0 to 100 nmol/L dose-dependently inhibited I(Ca-L) (P<0.01, n=5). The maximal rate of inhibition in this study reached 39% and IC(50) was 1.86 nmol/L. NPY had no effect on the voltage-dependence of calcium current amplitude and on the voltage-dependence of the steady-state gating variables. I(Ca-L) was activated at -30 mV, reaching the maximum at 0 mV. When both NE and NPY were applied with a concentration ratio of 500:1, 10 nmol/L NPY inhibited I(Ca-L) that had been increased by 5 mumol/L NE, which was consistent with the effect of NPY only on I(Ca-L). NPY also inhibited I(Na/Ca). At a concentration of 10 nmol/L, NPY inhibited inward and outward I(Na/Ca) from (0.27+/-0.11) pA/pF and (0.45+/-0.12) pA/pF to (0.06+/-0.01) pA/pF and (0.27+/-0.09) pA/pF, respectively (P<0.05, n=4). NPY at 10 nmol/L increased I(to) from (12.5+/-0.70) pA/pF to (14.7+/-0.59) pA/pF(P<0.05, n=4). NPY at 10 nmol/L did not affect I(Na) in rat myocytes and I(K) in guinea pig myocytes. NPY increased the speed of action potential depolarization and reduced action potential duration of I(Ca-L), I(Na/Ca) and I(to), which contributed to the reduction of contraction. These results indicate that the effects of NPY are opposite to the effects of NE on ion channels of cardiac myocytes.


Subject(s)
Calcium Channels, L-Type/drug effects , Heart Ventricles/cytology , Myocytes, Cardiac/metabolism , Neuropeptide Y/pharmacology , Sodium-Calcium Exchanger/antagonists & inhibitors , Animals , Calcium Channel Blockers/pharmacology , Female , Guinea Pigs , Ion Channels/drug effects , Male , Norepinephrine , Patch-Clamp Techniques , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...