Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Imeta ; 3(2): e169, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882494

ABSTRACT

The infant gut microbiome is increasingly recognized as a reservoir of antibiotic resistance genes, yet the assembly of gut resistome in infants and its influencing factors remain largely unknown. We characterized resistome in 4132 metagenomes from 963 infants in six countries and 4285 resistance genes were observed. The inherent resistome pattern of healthy infants (N = 272) could be distinguished by two stages: a multicompound resistance phase (Months 0-7) and a tetracycline-mupirocin-ß-lactam-dominant phase (Months 8-14). Microbial taxonomy explained 40.7% of the gut resistome of healthy infants, with Escherichia (25.5%) harboring the most resistance genes. In a further analysis with all available infants (N = 963), we found age was the strongest influencer on the resistome and was negatively correlated with the overall resistance during the first 3 years (p < 0.001). Using a random-forest approach, a set of 34 resistance genes could be used to predict age (R 2 = 68.0%). Leveraging microbial host inference analyses, we inferred the age-dependent assembly of infant resistome was a result of shifts in the gut microbiome, primarily driven by changes in taxa that disproportionately harbor resistance genes across taxa (e.g., Escherichia coli more frequently harbored resistance genes than other taxa). We performed metagenomic functional profiling and metagenomic assembled genome analyses whose results indicate that the development of gut resistome was driven by changes in microbial carbohydrate metabolism, with an increasing need for carbohydrate-active enzymes from Bacteroidota and a decreasing need for Pseudomonadota during infancy. Importantly, we observed increased acquired resistance genes over time, which was related to increased horizontal gene transfer in the developing infant gut microbiome. In summary, infant age was negatively correlated with antimicrobial resistance gene levels, reflecting a composition shift in the gut microbiome, likely driven by the changing need for microbial carbohydrate metabolism during early life.

2.
bioRxiv ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38746193

ABSTRACT

Innate immunity, the first line of defense against pathogens, relies on efficient elimination of invading agents by phagocytes. In the co-evolution of host and pathogen, pathogens developed mechanisms to dampen and evade phagocytic clearance. Here, we report that bacterial pathogens can evade clearance by macrophages through mimicry at the mammalian anti-phagocytic "don't eat me" signaling axis between CD47 (ligand) and SIRPα (receptor). We identified a protein, P66, on the surface of Borrelia burgdorferi that, like CD47, is necessary and sufficient to bind the macrophage receptor SIRPα. Expression of the gene encoding the protein is required for bacteria to bind SIRPα or a high-affinity CD47 reagent. Genetic deletion of p66 increases phagocytosis by macrophages. Blockade of P66 during infection promotes clearance of the bacteria. This study demonstrates that mimicry of the mammalian anti-phagocytic protein CD47 by B. burgdorferi inhibits macrophage-mediated bacterial clearance. Such a mechanism has broad implications for understanding of host-pathogen interactions and expands the function of the established innate immune checkpoint receptor SIRPα. Moreover, this report reveals P66 as a novel therapeutic target in the treatment of Lyme Disease.

3.
Nat Commun ; 15(1): 2041, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503741

ABSTRACT

Lyme disease is a tick-borne disease caused by bacteria of the genus Borrelia. The host factors that modulate susceptibility for Lyme disease have remained mostly unknown. Using epidemiological and genetic data from FinnGen and Estonian Biobank, we identify two previously known variants and an unknown common missense variant at the gene encoding for Secretoglobin family 1D member 2 (SCGB1D2) protein that increases the susceptibility for Lyme disease. Using live Borrelia burgdorferi (Bb) we find that recombinant reference SCGB1D2 protein inhibits the growth of Bb in vitro more efficiently than the recombinant protein with SCGB1D2 P53L deleterious missense variant. Finally, using an in vivo murine infection model we show that recombinant SCGB1D2 prevents infection by Borrelia in vivo. Together, these data suggest that SCGB1D2 is a host defense factor present in the skin, sweat, and other secretions which protects against Bb infection and opens an exciting therapeutic avenue for Lyme disease.


Subject(s)
Borrelia burgdorferi , Ixodes , Lyme Disease , Mice , Animals , Humans , Borrelia burgdorferi/genetics , Lyme Disease/microbiology , Ixodes/microbiology , Secretoglobins
4.
Polymers (Basel) ; 15(22)2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38006190

ABSTRACT

Glaucoma has become the world's leading cause of irreversible blindness, and one of its main characteristics is high intraocular pressure. Currently, the non-surgical drug treatment scheme to reduce intraocular pressure is a priority method for glaucoma treatment. However, the complex and special structure of the eye poses significant challenges to the treatment effect and safety adherence of this drug treatment approach. To address these challenges, the application of polymer-based self-assembled drug delivery systems in glaucoma treatment has emerged. This review focuses on the utilization of polymer-based self-assembled structures or materials as important functional and intelligent carriers for drug delivery in glaucoma treatment. Various drug delivery systems, such as eye drops, hydrogels, and contact lenses, are discussed. Additionally, the review primarily summarizes the design strategies and methods used to enhance the treatment effect and safety compliance of these polymer-based drug delivery systems. Finally, the discussion delves into the new challenges and prospects of employing polymer-based self-assembled drug delivery systems for the treatment of glaucoma.

5.
J Colloid Interface Sci ; 612: 156-170, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-34992016

ABSTRACT

Developing the multi-functional membranes including oil/water emulsion separation and removal of hazardous organic pollutants is essential to the purification of the complicated wastewater. However, it remains a daunting challenge to combine these intended functions while maintaining high separation efficiency. Herein, we developed a new 2D lamellar MXene/poly (arylene ether nitrile) (PEN) fibrous composite membrane through the self-assembly of TiO2 nanoparticles intercalated MXene nanosheets onto the porous PEN nanofibrous mats and bioinspired polydopamine triggered chemical-crosslinking with polyethyleneimine (PEI). Such nano-intercalation and mussel-inspired crosslinking could effectively regulate the interlayer spacing of the MXene nanosheet skin layer and surface wettability of the composite membrane, which also further contributed to the fast separation and unique bifunctional feature. It was found that the MXene@TiO2/PEN fibrous composite membrane exhibited low oil-adhesion and superhydrophilic (WCA = 0°)/underwater superoleophobic (UOCA > 155°) properties, which could efficiently separate various surfactant-stabilized oil-in-water emulsions under low pressure of 0.04 MPa while keeping good stability (Under 1 M HCl and 2 M NaOH solutions) and recyclability. Interestingly, the fibrous composite membrane achieved favorable permeation flux of 908-1003 Lm-2h-1 (2270-2507.5 Lm-2h-1bar-1) in comparison to other reported MXene based multifunctional composite membranes. Moreover, owing to the synergistic effect of MXene nanosheets and TiO2 nanoparticles, the MXene@TiO2/PEN membrane showed excellent photocatalytic degradation performance for various dyes under visible light, i.e. the photocatalytic degradation efficiency for 15 ppm MB, MO, CV, and MeB solutions achieved 92.31%, 93.50%, 98.06%, and 99.30% within 60 min, respectively. Such 2D MXene bio-functional composite membranes with outstanding oil/water emulsions separation and photocatalytic degradation of dyes pave an avenue for treating complicated oily wastewater.


Subject(s)
Water Purification , Ether , Ethers , Membranes, Artificial , Nitriles , Photolysis , Titanium
SELECTION OF CITATIONS
SEARCH DETAIL
...