Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(21): e2309002, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38569496

ABSTRACT

Preeclampsia (PE) is considered as a disease of placental origin. However, the specific mechanism of placental abnormalities remains elusive. This study identified thrombospondin-1 (THBS1) is downregulated in preeclamptic placentae and negatively correlated with blood pressure. Functional studies show that THBS1 knockdown inhibits proliferation, migration, and invasion and increases the cycle arrest and apoptosis rate of HTR8/SVneo cells. Importantly, THBS1 silencing induces necroptosis in HTR8/SVneo cells, accompanied by the release of damage-associated molecular patterns (DAMPs). Necroptosis inhibitors necrostatin-1 and GSK'872 restore the trophoblast survival while pan-caspase inhibitor Z-VAD-FMK has no effect. Mechanistically, the results show that THBS1 interacts with transforming growth factor B-activated kinase 1 (TAK1), which is a central modulator of necroptosis quiescence and affects its stability. Moreover, THBS1 silencing up-regulates the expression of neuronal precursor cell-expressed developmentally down-regulated 4 (NEDD4), which acts as an E3 ligase of TAK1 and catalyzes K48-linked ubiquitination of TAK1 in HTR8/SVneo cells. Besides, THBS1 attenuates PE phenotypes and improves the placental necroptosis in vivo. Taken together, the down-regulation of THBS1 destabilizes TAK1 by activating NEDD4-mediated, K48-linked TAK1 ubiquitination and promotes necroptosis and DAMPs release in trophoblast cells, thus participating in the pathogenesis of PE.


Subject(s)
MAP Kinase Kinase Kinases , Necroptosis , Nedd4 Ubiquitin Protein Ligases , Pre-Eclampsia , Thrombospondin 1 , Trophoblasts , Ubiquitination , Humans , Pre-Eclampsia/metabolism , Pre-Eclampsia/genetics , Female , Pregnancy , Trophoblasts/metabolism , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Kinase Kinases/genetics , Necroptosis/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , Nedd4 Ubiquitin Protein Ligases/genetics , Thrombospondin 1/metabolism , Thrombospondin 1/genetics , Adult , Placenta/metabolism
2.
Free Radic Biol Med ; 217: 1-14, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38522484

ABSTRACT

Age-associated decreases in follicle number and oocyte quality result in a decline in female fertility, which is associated with increased infertility. Granulosa cells play a major role in oocyte development and maturation both in vivo and in vitro. However, it is unclear whether a reduction in cryptochrome 1 (Cry1) expression contributes to granulosa cell senescence, and further exploration is needed to understand the underlying mechanisms. In this study, we investigated the role of Cry1, a core component of the molecular circadian clock, in the regulation of senescence in ovarian granulosa cells. Western blotting and qRT-PCR showed that Cry1 expression was downregulated in aged human ovarian granulosa cells and was correlated with age and anti-Müllerian hormone (AMH) levels. RNA-seq analysis suggested that ferritinophagy was increased after Cry1 knockdown in KGN cells. MDA, iron, and reactive oxygen species (ROS) assays were used to detect cellular ferritinophagy levels. Ferroptosis inhibitors, iron chelators, autophagy inhibitors, and nuclear receptor coactivator 4 (NCOA4) knockdown alleviated KGN cell senescence induced by Cry1 knockdown. Immunofluorescence, immunoprecipitation, and ubiquitination assays indicated that Cry1 affected NCOA4 ubiquitination and degradation through HERC2, thereby affecting NCOA4-mediated ferritinophagy and causing granulosa cell senescence. KL201, a Cry1 stabilizer, enhanced ovarian function in naturally aged mice by reducing ferritinophagy. Our study reveals the potential mechanisms of action of Cry1 during ovarian aging and provides new insights for the clinical treatment of age-related fertility decline.


Subject(s)
Cryptochromes , Iron , Animals , Female , Humans , Mice , Autophagy/genetics , Cellular Senescence , Cryptochromes/genetics , Granulosa Cells/metabolism , Iron/metabolism , Nuclear Receptor Coactivators/genetics , Nuclear Receptor Coactivators/metabolism , Ovarian Follicle/metabolism , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...