Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Fungi (Basel) ; 10(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38786667

ABSTRACT

The filamentous fungus Aspergillus oryzae (A. oryzae) has been extensively used for the biosynthesis of numerous secondary metabolites with significant applications in agriculture and food and medical industries, among others. However, the identification and functional prediction of metabolites through genome mining in A. oryzae are hindered by the complex regulatory mechanisms of secondary metabolite biosynthesis and the inactivity of most of the biosynthetic gene clusters involved. The global regulatory factors, pathway-specific regulatory factors, epigenetics, and environmental signals significantly impact the production of secondary metabolites, indicating that appropriate gene-level modulations are expected to promote the biosynthesis of secondary metabolites in A. oryzae. This review mainly focuses on illuminating the molecular regulatory mechanisms for the activation of potentially unexpressed pathways, possibly revealing the effects of transcriptional, epigenetic, and environmental signal regulation. By gaining a comprehensive understanding of the regulatory mechanisms of secondary metabolite biosynthesis, strategies can be developed to enhance the production and utilization of these metabolites, and potential functions can be fully exploited.

2.
J Fungi (Basel) ; 10(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38667919

ABSTRACT

Aspergillus oryzae, a biosafe strain widely utilized in bioproduction and fermentation technology, exhibits a robust hydrolytic enzyme secretion system. Therefore, it is frequently employed as a cell factory for industrial enzyme production. Moreover, A. oryzae has the ability to synthesize various secondary metabolites, such as kojic acid and L-malic acid. Nevertheless, the complex secretion system and protein expression regulation mechanism of A. oryzae pose challenges for expressing numerous heterologous products. By leveraging synthetic biology and novel genetic engineering techniques, A. oryzae has emerged as an ideal candidate for constructing cell factories. In this review, we provide an overview of the latest advancements in the application of A. oryzae-based cell factories in industrial production. These studies suggest that metabolic engineering and optimization of protein expression regulation are key elements in realizing the widespread industrial application of A. oryzae cell factories. It is anticipated that this review will pave the way for more effective approaches and research avenues in the future implementation of A. oryzae cell factories in industrial production.

3.
Front Bioeng Biotechnol ; 11: 1249841, 2023.
Article in English | MEDLINE | ID: mdl-37869712

ABSTRACT

Saccharomyces cerevisiae is one of the most extensively used biosynthetic systems for the production of diverse bioproducts, especially biotherapeutics and recombinant proteins. Because the expression and insertion of foreign genes are always impaired by the endogenous factors of Saccharomyces cerevisiae and nonproductive procedures, various technologies have been developed to enhance the strength and efficiency of transcription and facilitate gene editing procedures. Thus, the limitations that block heterologous protein secretion have been overcome. Highly efficient promoters responsible for the initiation of transcription and the accurate regulation of expression have been developed that can be precisely regulated with synthetic promoters and double promoter expression systems. Appropriate codon optimization and harmonization for adaption to the genomic codon abundance of S. cerevisiae are expected to further improve the transcription and translation efficiency. Efficient and accurate translocation can be achieved by fusing a specifically designed signal peptide to an upstream foreign gene to facilitate the secretion of newly synthesized proteins. In addition to the widely applied promoter engineering technology and the clear mechanism of the endoplasmic reticulum secretory pathway, the innovative genome editing technique CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated system) and its derivative tools allow for more precise and efficient gene disruption, site-directed mutation, and foreign gene insertion. This review focuses on sophisticated engineering techniques and emerging genetic technologies developed for the accurate metabolic regulation of the S. cerevisiae expression system.

4.
Small ; 19(37): e2300078, 2023 09.
Article in English | MEDLINE | ID: mdl-37226364

ABSTRACT

Canonical phototherapeutics have several limitations, including a lack of tumor selectivity, nondiscriminatory phototoxicity, and tumor hypoxia aggravation. The tumor microenvironment (TME) is characterized by hypoxia, acidic pH, and high levels of H2 O2 , GSH, and proteases. To overcome the shortcomings of canonical phototherapy and achieve optimal theranostic effects with minimal side effects, unique TME characteristics are employed in the development of phototherapeutic nanomedicines. In this review, the effectiveness of three strategies for developing advanced phototherapeutics based on various TME characteristics is examined. The first strategy involves targeted delivery of phototherapeutics to tumors with the assistance of TME-induced nanoparticle disassembly or surface modification. The second strategy involves near-infrared absorption increase-induced phototherapy activation triggered by TME factors. The third strategy involves enhancing therapeutic efficacy by ameliorating TME. The functionalities, working principles, and significance of the three strategies for various applications are highlighted. Finally, possible challenges and future perspectives for further development are discussed.


Subject(s)
Nanoparticles , Neoplasms , Humans , Nanomedicine , Tumor Microenvironment , Phototherapy , Neoplasms/therapy , Neoplasms/pathology , Nanoparticles/chemistry , Theranostic Nanomedicine , Cell Line, Tumor
5.
Front Biosci (Landmark Ed) ; 28(1): 6, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36722271

ABSTRACT

The liver is the most significant metabolic organ in the body and plays an important role in lipid metabolism. Liver lipid metabolism disorders cause hepatic diseases such as hepatitis, hepatic cirrhosis, and hepatoma. Autophagy is a process of generating energy and building blocks by degrading redundant or damaged proteins and organelles. Thus, it helps in the maintenance of cellular homeostasis. Recent discoveries revealed that lipophagy plays a vital role in hepatic cellular homeostasis and lipid metabolism. Its imbalance is always associated with the perturbation of lipid metabolism in the liver. This article reviewed the molecular mechanisms involved in lipophagy and the interaction between lipophagy and hepatic lipid metabolism. Increasing evidence suggests that lipophagy is an effective method to resolve liver diseases.


Subject(s)
Carcinoma, Hepatocellular , Lipid Metabolism , Humans , Liver Cirrhosis , Autophagy
6.
J Am Chem Soc ; 145(3): 1617-1630, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36625785

ABSTRACT

Dipoles are widely involved in π-π interactions and are central to many chemical and biological functions, but their influence on the strength of π-π interactions remains unclear. Here, we report a study of π-π interaction between azulene-based, polar single molecules and between naphthalene-based, nonpolar single molecules. By performing scanning tunneling microscopy break junction measurements of single-molecule conductance, we show that the π-stacked dimers formed by the azulene-based, polar aromatic structures feature higher electrical conductivity and mechanical stability than those formed by the naphthalene-based, nonpolar molecules. Mechanical control of π-π interactions in both rotational and translational motion reveals a sensitive dependence of the stacking strength on relative alignment between the dipoles. The antiparallel alignment of the dipoles was found to be the optimal stacking configuration that underpins the observed enhancement of π-π stacking between azulene-based single molecules. Density functional theory calculations further explained the observed enhancement of stacking strength and the corresponding charge transport efficiency. Our experimental and theoretical results show that the antiparallel alignment of the dipole moments significantly enhances the electronic coupling and mechanical stability of π-π stacking. In addition, in the formation of single-molecule junctions, the azulene group was experimentally and theoretically proved to form a Au-π contact with electrodes with high charge transport efficiency. This paper provides evidence and interpretation of the role of dipoles in π-π interactions at the single-molecule level and offers new insights into potential applications in supramolecular devices.

7.
China Occupational Medicine ; (6): 468-471, 2021.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-923220

ABSTRACT

Coal miners are a high-risk occupational group of work-related musculoskeletal disorders(WMSDs). This disease not only causes a reduction in the quality of life of workers, loss work ability, and decline in work efficiency, but also becomes an important factor leading to increase social medical burden. At present, most of the evaluation of WMSDs of coal miners at home and abroad adopts the international general scale. Chinese scholars have developed a WMSDs questionnaire that meets the occupational characteristics of Chinese population based on the international general scale—the Chinese Musculoskeletal Disorders Questionnaire. The questionnaire has good reliability and validity, and is a reliable and effective tool for evaluating WMSDs. The prevalence of WMSDs in coal miners is relatively high. The occupational factors that affect WMSDs in coal miners are mainly physical load, postural load, mental load, work organization, and work environment. The individual factors are mainly age, working experience, and education level. It′s recommended to prevent and control the occurrence of coal miners′ WMSDs through multi-level intervention measures such as strengthening education, changing the working posture, and improving the working conditions of coal miners, and rationally arranging labor organizations.

8.
Onco Targets Ther ; 11: 5429-5439, 2018.
Article in English | MEDLINE | ID: mdl-30233204

ABSTRACT

BACKGROUND: Temozolomide (TMZ)-based chemotherapy represents an effective way for treating human glioma. However, its clinical application is limited because of its side effects and resistance to standard chemotherapy. Hence, the search for novel chemosensitizers to augment their anticancer efficiency has attracted much attention. Natural borneol (NB) has been identified as a potential chemosensitizer in treating human cancers. However, the synergistic effect and mechanism of NB and TMZ in human glioma have not been investigated yet. MATERIALS AND METHODS: U251 human glioma cells were cultured, and the cytotoxicity and apoptosis of NB and/or TMZ were examined by MTT assay, flow cytometric analysis and Western blot. Nude mice tumor model was also employed to evaluate the in vivo anticancer effect and mechanism. RESULTS: The results showed that the combined treatment of NB and TMZ more effectively inhibited human glioma growth via triggering mitochondria-mediated apoptosis in vitro, accompanied by the caspase activation. Combined treatment of NB and TMZ also caused mitochondrial dysfunction through disturbing Bcl-2 family expression. Further investigation revealed that NB enhanced TMZ-induced DNA damage through inducing reactive oxide species (ROS) overproduction. Moreover, glioma tumor xenograft growth in vivo was more effectively inhibited by the combined treatment with NB and TMZ through triggering apoptosis and anti-angiogenesis. CONCLUSION: Taken together, our findings validated that the strategy of using NB and TMZ could be a highly efficient way to achieve anticancer synergism.

9.
BMC Microbiol ; 15: 223, 2015 Oct 22.
Article in English | MEDLINE | ID: mdl-26490537

ABSTRACT

BACKGROUND: FabG is the only known enzyme that catalyzes reduction of the 3-ketoacyl-ACP intermediates of bacterial fatty acid synthetic pathways. However, there are two Ralstonia solanacearum genes, RSc1052 (fabG1) and RSp0359 (fabG2), annotated as encoding putative 3-ketoacyl-ACP reductases. Both FabG homologues possess the conserved catalytic triad and the N-terminal cofactor binding sequence of the short chain dehydrogenase/reductase (SDR) family. Thus, it seems reasonable to hypothesize that RsfabG1 and RsfabG2 both encode functional 3-ketoacyl-ACP reductases and play important roles in R. solanacearum fatty acid synthesis and growth. METHODS: Complementation of Escherichia coli fabG temperature-sensitive mutant with R. solanacearum fabGs encoded plasmids was carried out to test the function of RsfabGs in fatty acid biosynthesis. RsFabGs proteins were purified by nickel chelate chromatography and fatty acid biosynthetic reaction was reconstituted to investigate the 3-ketoacyl-ACP reductase activity of RsFabGs in vitro. Disruption of both RsfabG genes was done via DNA homologous recombination to test the function of both RsfabG in vivo. And more we also carried out pathogenicity tests on tomato plants using RsfabG mutant strains.  RESULTS: We report that expression of either of the two proteins (RsFabG1 and RsFabG2) restores growth of the E. coli fabG temperature-sensitive mutant CL104 under non-permissive conditions. In vitro assays demonstrate that both proteins restore fatty acid synthetic ability to extracts of the E. coli strain. The RsfabG1 gene carried on the R. solanacearum chromosome is essential for growth of the bacterium, as is the case for fabG in E. coli. In contrast, the null mutant strain with the megaplasmid-encoded RsfabG2 gene is viable but has a fatty acid composition that differs significantly from that of the wild type strain. Our study also shows that RsFabG2 plays a role in adaptation to high salt concentration and low pH, and in pathogenesis of disease in tomato plants. CONCLUSION: R. solanacearum encodes two 3-ketoacyl-ACP reductases that both have functions in fatty acid synthesis. We supply the first evidence that, like other enzymes in the bacterial fatty acid biosynthetic pathway, one bacterium may simultaneously possess two or more 3-oxoacyl-ACP reductase isozymes.


Subject(s)
3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/genetics , 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase/metabolism , Fatty Acids/analysis , Ralstonia solanacearum/chemistry , Ralstonia solanacearum/enzymology , Replicon , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Deletion , Genetic Complementation Test , Solanum lycopersicum/microbiology , Plant Diseases/microbiology , Ralstonia solanacearum/genetics , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Virulence
10.
J Food Prot ; 77(10): 1740-6, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25285491

ABSTRACT

Amomum kravanh is widely cultivated and used as a culinary spice. In this work, the chemical composition of the essential oil obtained by hydrodistillation of A. kravanh fruits was analyzed by gas chromatography-mass spectrometry, and 34 components were identified. 1,8-Cineole (68.42%) was found to be the major component, followed by α-pinene (5.71%), α-terpinene (2.63%), and ß-pinene (2.41%). The results of antibacterial tests showed that the sensitivities to the essential oil of different foodborne pathogens tested were different based on the Oxford cup method, MIC, and MBC assays, and the essential oil exhibited the best antibacterial activity against Bacillus subtilis, a gram-positive bacterium, and Escherichia coli, a gram-negative bacterium. Growth in the presence of Amomum kravanh at the MIC, as measured by monitoring optical density over time, demonstrated that the essential oil was bacteriostatic after 12 h to both B. subtilis and E. coli. Observations of cell membrane permeability, cell constituent release assay, and transmission electron microscopy indicated that this essential oil may disrupt the cell wall and cell membrane permeability, leading to leakage of intracellular constituents in both B. subtilis and E. coli.


Subject(s)
Amomum/chemistry , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Escherichia coli/drug effects , Oils, Volatile/pharmacology , Plant Oils/pharmacology , Bicyclic Monoterpenes , Bridged Bicyclo Compounds , Cell Membrane Permeability/drug effects , Cyclohexane Monoterpenes , Cyclohexanols , Eucalyptol , Gas Chromatography-Mass Spectrometry , Microbial Sensitivity Tests , Microscopy, Electron , Monoterpenes , Oils, Volatile/chemistry , Plant Extracts/chemistry , Plant Oils/chemistry , Spices
11.
J Agric Food Chem ; 61(25): 6044-9, 2013 Jun 26.
Article in English | MEDLINE | ID: mdl-23758080

ABSTRACT

Green huajiao, which is the ripe pericarp of the fruit of Zanthoxylum schinifolium Sieb. et Zucc, is widely consumed in Asia as a spice. In this work, the chemical composition of the essential oil from green huajiao was analyzed by gas chromatography (GC) and GC/mass spectrometry (MS), and the majority of components were identified. Linalool (28.2%), limonene (13.2%), and sabinene (12.1%) were found to be the major components. The antibacterial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of the essential oil were evaluated against selected bacteria, including food-borne pathogens. The results showed that the sensitivities to the essential oil were different for different bacteria tested, and the susceptibility of Gram-positive bacteria tested was observed to be greater than that of Gram-negative bacteria. The antibacterial activity of the essential oil was particularly strong against Staphylococcus epidermidis , with MIC and MBC values of 2.5 and 5.0 mg/mL, respectively. A postcontact effect assay also confirmed the essential oil had a significant effect on the growth rate of surviving S. epidermidis . The antibacterial activity of the essential oil from green huajiao may be due to the increase in permeability of cell membranes, and the leakage of intracellular constituents, on the basis of the cell constituents' release assay and electron microscopy observations.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Oils, Volatile/pharmacology , Plant Oils/chemistry , Plant Oils/pharmacology , Staphylococcus epidermidis/drug effects , Zanthoxylum/chemistry , Food Microbiology , Microbial Sensitivity Tests , Oils, Volatile/chemistry , Staphylococcus epidermidis/growth & development
12.
Onderstepoort J Vet Res ; 79(1): E1-6, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-23327310

ABSTRACT

Haemophilus parasuis is the etiological agent of Glässer's disease, which is characterised by fibrinous polyserositis, meningitis and polyarthritis, causing severe economic losses to the swine industry. In this study, a loop-mediated isothermal amplification (LAMP) test was developed to improve the specificity, facility and speed of diagnosis of H. parasuis isolates. The LAMP assay rapidly amplified the target gene within 50 min incubation at 63 °C in a laboratory water bath. The LAMP amplicon could be visualised directly in the reaction tubes following the addition of SYBR Green I dye. The detection limit of this LAMP method was 10 CFU/mL, which was 10 times more sensitive than the earlier 16S rRNA polymerase chain reaction (PCR) test conducted by Oliveira, Galina and Pijoan (2001), and no cross-reactivity was observed from other non-H. parasuis strains. This LAMP test was evaluated further on 187 clinical specimens from pigs suspected of being infected with H. parasuis. Forty-three were found positive by bacterial isolation of H. parasuis, as well as by the 16S rRNA PCR and LAMP tests. The 43 H. parasuis isolates were classified into 9 serovars and had 37 genetic patterns when analysed by pulsed-field gel electrophoresis (PFGE). This displayed that various H. parasuis serovars and genotypes were widely distributed in South China. Therefore, the speed, specificity and sensitivity of the LAMP test, the lack of a need for expensive equipment, and the visual readout showed great potential for a correct clinical diagnosis of H. parasuis in favour of controlling Glässer's disease.


Subject(s)
Haemophilus Infections/veterinary , Haemophilus parasuis/isolation & purification , Nucleic Acid Amplification Techniques/veterinary , Swine Diseases/diagnosis , Animals , China , Electrophoresis, Gel, Pulsed-Field/veterinary , Haemophilus Infections/diagnosis , Haemophilus parasuis/classification , Nucleic Acid Amplification Techniques/methods , Polymerase Chain Reaction/veterinary , RNA, Ribosomal, 16S/chemistry , Sensitivity and Specificity , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...