Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 471: 134347, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38677115

ABSTRACT

Microplastics (MPs) are among the most widespread anthropogenic pollutants of natural environments, while limited research has focused on the fate of MPs in soils along the Plateau rivers. In this study, we investigated MPs in soils along the source areas of the Yangtze River on the Qinghai-Tibet Plateau. The results showed mean MP abundance values of (89.4 ± 51.0) and (64.4 ± 24.5) items/kg of dry soils around the tributary and mainstream areas, respectively. Film, transparent colors, and polyethylene were common shape, color, and compositions, respectively. The correlation analysis and PCA revealed that MP abundance was related to soil heavy metals (Cr and Ni) and nutrients (TOC and TP) (p < 0.05). Structural equation modeling also revealed that population density was the dominant driving factor contributing to MPs, with a total effect coefficient of 0.45. In addition, the conditional fragmentation model further distinguished the differences in MP sources from upstream to downstream along the Jinsha River. The significant sources of MPs in the bare land and grasslands from the upper reaches of the Jinsha River included traffic, tourism, and atmospheric transport. In contrast, MP transport during farming activities mainly contributed to MPs in the agricultural soil in the lower reaches.

2.
Front Pharmacol ; 15: 1354809, 2024.
Article in English | MEDLINE | ID: mdl-38487166

ABSTRACT

Nobiletin (NOB) is a flavonoid derived from citrus peel that has potential as an alternative treatment for liver disease. Liver disease is a primary health concern globally, and there is an urgent need for effective drugs. This review summarizes the pharmacological characteristics of NOB and current in vitro and in vivo studies investigating the preventive and therapeutic effects of NOB on liver diseases and its potential mechanisms. The findings suggest that NOB has promising therapeutic potential in liver diseases. It improves liver function, reduces inflammation and oxidative stress, remodels gut microflora, ameliorates hepatocellular necrosis, steatosis, and insulin resistance, and modulates biorhythms. Nuclear factor erythroid 2-related factor 2 (Nrf2), nuclear transcription factor kappa (NF-κB), AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α(PPAR-α), extracellular signal-regulated kinase (ERK), protein kinase B (AKT), toll-like receptor 4 (TLR4) and transcription factor EB (TFEB) signaling pathways are important molecular targets for NOB to ameliorate liver diseases. In conclusion, NOB may be a promising drug candidate for treating liver disease and can accelerate its application from the laboratory to the clinic. However, more high-quality clinical trials are required to validate its efficacy and identify its molecular mechanisms and targets.

3.
Water Res ; 254: 121356, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38430756

ABSTRACT

Microplastics are found in continental and oceanic waters worldwide, but their spatial distribution shows an intricate pattern. Their driving factors remain difficult to identify and widely discussed due to insufficient and unstandardized monitoring data. Here, based on in situ experiments and hundreds of river samples from the Qinghai-Tibet Plateau, we formulate a model to standardize aquatic microplastic measurements. The model was applied to existing data on a global scale. These data are standardized to a 20 µm mesh size, resulting in a new spatial distribution of aquatic microplastic densities, with average concentrations of 554.93 ± 1352.42 items/m3 in Europe, 2558.90 ± 4799.62 in North America and 1741.94 ± 3225.09 in Asia. Excessive contaminations (microplastic concentration > 104 items/m3) are in the Yangtze River, the Charleston Harbor Estuary, the Bodega Bay and the Winyah Bay. We show that, based on these standardized concentrations, new driving factors could be used to predict the global or regional microplastic distribution in continental waters, such as the Human Development Index with a correlation of 75.86% on a global scale, the nighttime lights with a correlation of 37.26 ± 0.30% in Europe and 39.02 ± 0.54% in Asia, and the Mismanagement Plastic Waste with a correlation of 61.21 ± 19.86% in North America. Mapping standardized concentrations of aquatic microplastics enables a better comparison of contamination levels between regions and reveals more accurate hotspots to better adapt remediation efforts and future plastic pollution scenarios.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Plastics , Water Pollutants, Chemical/analysis , Environmental Monitoring , Reference Standards
4.
J Hazard Mater ; 455: 131526, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37167873

ABSTRACT

Microplastics (MPs) in the Yangtze River have been drawn increasing attention recently with most merely concentrating on the plain area. This research focuses on the source area of the Yangtze River on the Qinghai-Tibet Plateau (QTP), revealing the occurrence, drivers, sources, and exposure risks of riverine MPs in the Jinsha River (JSR) basin. The results showed that average MP abundances determined were higher in the tributaries than in the of mainstreams. According to the correlation analysis, MP abundance was consistently negatively related to pH and altitude both in water and sediment. However, MPs in two media showed a contrary relationship with river width, which could be explained by the special terrain of plateau rivers and hydrological conditions. After the tributary river flow into the mainstream, the concentration of MPs in the mainstream near the tributary side were significantly lower than that before confluence temporarily. Based on the conditional fragmentation-based model, the cumulative λ value of fibers in surface water along the river divided the JSR into three stages (upstream, midstream, and downstream). Under certain assumptions, the proportions of MPs sourced from three stages were eventually revealed, respectively. This is conducive to better understanding the plateau environmental impacts of MP distribution in the large river.

5.
Chemosphere ; 332: 138824, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37164196

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants (POPs) that pose significant environmental and human health risks. The presence of PFAS in landfill leachate is becoming an increasingly concerning issue. This article presents a comprehensive review of current knowledge and research gaps in monitoring and removing PFAS from landfill leachate. The focus is on evaluating the effectiveness and sustainability of existing removal technologies, and identifying areas where further research is needed. To achieve this goal, the paper examines the existing technologies for monitoring and treating PFAS in landfill leachate. The review emphasizes the importance of sample preparation techniques and quality assurance/quality control measures in ensuring accurate and reliable results. Then, this paper reviewed the existing technologies for removal and remediation of PFAS in landfill leachates, such as adsorption, membrane filtration, photocatalytic oxidation, electrocatalysis, biodegradation, and constructed wetlands. Additionally, the paper summarizes the factors that exhibit the performance of various treatment technologies: reaction time, experimental conditions, and removal rates. Furthermore, the paper evaluates the potential application of different remediation technologies (i.e., adsorption, membrane filtration, photocatalytic oxidation, electrocatalysis, biodegradation, and constructed wetlands, etc.) in treating landfill leachate containing PFAS and its precursors, such as fluorotelomeres like FTOH and FTSs. The review highlights the importance of considering economic, technical, and environmental factors when selecting control measures. Overall, this article aims to provide guidance for promoting environmental protection and sustainable development in the context of PFAS contamination in landfill leachate.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Humans , Water Pollutants, Chemical/analysis , Waste Disposal Facilities , Fluorocarbons/analysis , Biodegradation, Environmental , Quality Control
6.
Sci Total Environ ; 857(Pt 1): 159399, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36240913

ABSTRACT

Microplastics (MPs), a class of emerging contaminants, are ubiquitous in the environment, but limited information is known about them in remote terrestrial environment at high-altitude areas with inconvenient traffic and sparsely populated. In this study, 54 soil samples were collected from various land use patterns (greenhouse, ordinary farmland, grassland, and bare land) in western area of the Tibetan Plateau to determine the influence of land use type, altitude, meteorological parameters, and distance from the road edge on MP distribution. The MP abundance ranged from 0 (not detected) to 190 items/kg, with an average number of 64.8 items/kg. The concentration of MPs was slightly negatively correlated with altitude because of less human activities in high-altitude areas (especially agricultural activities). The random forest (RF) models showed that altitude was the most important driving factor that affected the MP distribution. Small-sized MPs were more abundant at higher altitudes than at low ones, and the special natural environment of the high-altitude areas (tall vegetation scarcely, UV, and strong wind speed) may be conducive to the degradation of MPs in surface soils. The special source of MPs in non-agricultural soils was associated with traffic behavior: parking and rest behavior beside roads at high altitude areas, which filled an important source of MPs in the plateau area. This study emphasized the need to investigate the effects of traffic activities on MPs in remote areas at high altitudes.


Subject(s)
Microplastics , Soil , Humans , Plastics , Altitude , Tibet , Environmental Monitoring
7.
J Hazard Mater ; 417: 126034, 2021 09 05.
Article in English | MEDLINE | ID: mdl-33992006

ABSTRACT

Microplastics (MPs) have been widely detected in the environments, yet the sources of MPs in freshwater of remote areas at high altitude were not well understood. This study investigated the abundance and distribution of MPs in water bodies and sediments at the Qinghai-Tibet Plateau (QTP). MPs were detected in all samples (47 water and 33 sediment samples) with the mean abundance of 624.70 ± 411.39 items/m3 in water and 41.52 ± 22.31 items/kg in sediment. In descending order, the highest MP oncentrations were found in turbid rivers>agricultural channel water>lakes>ordinary rivers. The results showed that MP abundance was associated with the water quality (especially COD) on the QTP, and it was negatively correlated with altitude due to less human activities (especially agricultural activities) at high altitude areas. In addition, more abundant MPs with small sized was found in the higher altitudes than low ones. Determining the effects of different environments on the distribution and degradation of MPs in the high altitude area of the QTP, this study emphasized the attention to be given to this emerging pollutant in the high altitude remote areas.


Subject(s)
Microplastics , Water Pollutants, Chemical , Altitude , Environmental Monitoring , Humans , Plastics , Tibet , Water Pollutants, Chemical/analysis
8.
Environ Pollut ; 279: 116939, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33770651

ABSTRACT

Microplastic (MP) pollution in the environment has aroused great concern. However, our knowledge of MP abundance and distribution in soil environment is scarce. This work investigated the MPs in the farmland and grassland at a remote area of China, namely, the eastern area of the Qinghai-Tibet Plateau (QTP). The average numbers of MPs were 53.2 ± 29.7 and 43.9 ± 22.3 items/kg in shallow and deep soil, respectively, from 35 soil samples. A remarkable difference in MP abundances was observed among soil samples from mulch farmland, greenhouses, farmland without covering, and grassland. The MPs were mostly in the form of a film and transparent in color in this study. The dominant polymers of MPs in the soil samples were polyester (PE) and polypropylene (PP). This study revealed the characteristics of MP distribution among different land use at the QTP, and MPs may stem from the fragmentation of plastic mulch in farmland soil. Notably, MP abundance increased with the increase in mulching time in facility agriculture. Additionally, human disturbances and increased mulching time in facility agriculture promote the fragmentation of soil MPs. This study provides important data for follow-up research on MPs in a plateau terrestrial ecosystem.


Subject(s)
Microplastics , Soil , Agriculture , China , Ecosystem , Farms , Grassland , Humans , Plastics , Tibet
9.
Chemosphere ; 275: 130099, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33667772

ABSTRACT

Potentially toxic elements (PTEs) generated from mining activities have affected ecological diversity and ecosystem functions around the world. Accurately assessing the long-term effects of PTEs is critical to classifying recoverable areas and proposing management strategies. Mining activities that shape geographical patterns of biodiversity in individual regions are increasingly understood, but the complex interactions on broad scales and in changing environments are still unclear. In this study, we developed a series of empirical models that simulate the changes in biodiversity and ecosystem functions in mine-affected regions along elevation gradients (1500-3600 m a.s.l) in the metal-rich Qilian Mountains (∼800 km) on the northeastern Tibetan Plateau (China). Our results confirmed the crucial role of PTEs dispersal, topography, and climatic heterogeneity in the diversification of plant community composition. On average, 54% of the changes in ecosystem functions were explained by the interactions among topography, climate, and PTEs. However, merely 30% of the changes were correlated with a single driver. The changes in species composition (explained variables = 94.8%) in the PTE-polluted habitats located in the warm and humid low-elevation deserts and grasslands were greater than those occurring in the dry alpine deserts and grasslands. The ecosystem functions (soil characteristics, nutrient migration, and plant biomass) experienced greater changes in the humid low-elevation grasslands and alpine deserts. Our results suggest that the processes driven by climate or other factors can result in high-altitude PTE-affected habitat facing greater threats.


Subject(s)
Climate Change , Ecosystem , Altitude , Biodiversity , China , Tibet
10.
J Hazard Mater ; 407: 124776, 2021 04 05.
Article in English | MEDLINE | ID: mdl-33388722

ABSTRACT

Microplastics (MPs) are pervasive in the environment and have posed growing threat to ecosystems and human health. This study investigated MP abundances in surface water (fresh and salt lakes, urban and rural rivers, etc.) from 28 stations in the Qinghai-Tibet Plateau. MPs were detected in 25 out of 28 water samples with relatively low abundance (average 584.82 particles m-3). Fibers were the most frequently observed shape, particle sizes mostly ranged from 100 to 500 µm, and the greatest number of MPs was polypropylene. Source analysis identified the major sources of domestic wastewater and tourism in some areas. The concentration and proportion of small MPs (20-100 µm) in salty water were apparently greater than that in fresh water, indicating Salt intrusion accelerated MPs fragmentation. As the study area is the origin of the Yangtze River, we further compared the MP distribution throughout the watershed. Nearly two orders of magnitude in MP concentrations were increased associated with urban agglomeration in the middle and downstream areas, but the highest level was marked around the Yichang City (location of the Three Gorges Reservoir) due to interception associated with sedimentation and precipitation. This study provides data and theoretical bases for analyzing MPs migration and degradation processes in high altitudes.

11.
Sci Total Environ ; 739: 140087, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32758955

ABSTRACT

Microplastics are one of the most valuable indicators reflecting the effects of human activities on natural environment. This study was conducted in a representative remote region of Tibetan Plateau in China, simultaneously analyzing the abundance, compositions and fate of MPs both in water and soil media. MPs were detected in surface water, sediment and soil with abundances ranging from 66.6 to 733.3 number/m3, 20 to 160 items/kg, and 20 to 110 items/kg, respectively. Fibers were the most frequently observed shape in the surface water and sediment, while the dominant shape in the soil was film. The major polymers of MPs in water and soil samples were polypropylene (PP) and polyethylene (PE). Small MPs were the main components with the <500µm fraction accounting for 94.74%, 88.37% and 88.34% of total MP particles in surface water, sediment and soil, respectively. Correlation analysis was further conducted to identify the sources of MPs from different human activities. The night light index was innovatively used to represent population rather than local residents, considering the large number of tourists in this region. It was found that tourism was the main source of MPs in water bodies, while facility agriculture and previous secondary industry are major contributors to soil MPs. A simplified equation set for MP abundance prediction was also formulated related to different industrial features. This study provides an evidence of noticeable MPs associated with human activities even at remote regions, and advances a feasible tool for MPs prediction according to local economic development. CAPSULE: The effect of human activities on natural environment in a remote region was illustrated by evaluating the abundance, compositions and fate of MPs across freshwater and terrestrial environment.

12.
Environ Pollut ; 255(Pt 2): 113255, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31563784

ABSTRACT

As one of the most cost-effective and sustainable methods for contaminants' removal, sequestration and/or detoxification, phytoremediation has already captured comprehensive attention worldwide. Nevertheless, the accurate effects of various spatial pattern in enhancing phytoremediation efficiency is not yet clear, especially for the polluted mining areas. This study designed nine planting patterns (monocropping, double intercropping and triple intercropping) of three indigenous plant species (Setaria viridis (L.), Echinochloa crus-galli (L.) and Phragmites australis (Cav.) Trin. ex Steud.) to further explore the effects of plants spatial pattern on phytoremediation efficiency. Considering the uncertainties of the residual contaminants' concentration (RCC) caused by soil anisotropy, permeability and land types, the interval transformation was introduced into the plant uptake model to simulate the remediation efficiency. Then multi-criteria decision analysis (MCDA) were applied to optimal the planting patterns, with the help of criteria of (a) the amount of heavy metal absorption; (b) the concentration of residual contaminant in soil; (c) root tolerance of heavy metals; (d) the total investment cost. Results showed that (1) the highest concentrations of Zn, Cd, and Pb of the polluted area were 7320.02, 14.30, 1650.51 mg kg-1 (2) During the 180 days simulation, the highest RMSE of residue trace metals in soil are 3.02(Zn), 2.67(Pb), 2.89(Cd), respectively. (3) The result of IMCDA shows that the planting patterns of Setaria viridis, Echinochloa crus-galli and Phragmites australis in alternative a9 (269 mg kg-1 year-1) had the highest absorption rate of heavy metals compared with a7 (235 mg kg-1 year-1) and a2 (240 mg kg-1 year-1). After 20 years of remediation, the simulated RCC in a9 is far below the national standard, and the root toxicity is 0.12 (EC ≤ EC20). In general, the optimal alternative derived from interval residual contaminant concentration can effectively express the dynamic of contaminant distribution and then can be effectively employed to evaluate the sustainable remediation methods.


Subject(s)
Biodegradation, Environmental , Metals, Heavy/metabolism , Plants/metabolism , Soil Pollutants/metabolism , Decision Support Techniques , Metals, Heavy/analysis , Mining , Plants/drug effects , Poaceae , Soil/chemistry , Soil Pollutants/analysis , Trace Elements/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...