Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38674507

ABSTRACT

Rice is a staple food for more than half of the global population due to its food security and sustainable development. Weeds compete with crops for sunlight and indispensable nutrients, affecting the yield and quality of crops. Breeding herbicide-tolerant rice varieties paired with herbicide application is expected to help with weed control. In this study, 194 Japonica/Geng rice varieties or lines collected from the Huanghuaihai region of China were screened by Kompetitive Allele-Specific PCR (KASP) markers based on four mutation sites within OsALS1 (LOC_Os02g30630), which is the target of imidazolinone (IMI) herbicides. Only the OsALS1627N haplotype was identified in 18 varieties, including the previously reported Jingeng818 (JG818), and its herbicide resistance was validated by treatment with three IMIs. To investigate the origin of the OsALS1627N haplotype in the identified varieties, six codominant PCR-based markers tightly linked with OsALS1 were developed. PCR analysis revealed that the other 17 IMI-tolerant varieties were derived from JG818. We randomly selected three IMI-tolerant varieties for comparative whole-genome resequencing with known receptor parent varieties. Sequence alignment revealed that more loci from JG818 have been introduced into IMI-tolerant varieties. However, all three IMI-tolerant varieties carried clustered third type single nucleotide polymorphism (SNP) sites from unknown parents, indicating that these varieties were not directly derived from JG818, whereas those from different intermediate improved lines were crossed with JG818. Overall, we found that only OsALS1627N from JG818 has been broadly introduced into the Huanghuaihai region of China. Additionally, the 17 identified IMI-tolerant varieties provide alternative opportunities for improving such varieties along with other good traits.

2.
Rice (N Y) ; 13(1): 28, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32462553

ABSTRACT

BACKGROUND: Bacterial leaf streak (BLS) and bacterial blight (BB) are two major prevalent and devastating rice bacterial diseases caused by the Gram-negative bacteria of Xanthomonas oryzae pv. oryzicola (Xoc) and Xanthomonas oryzae pv. oryzae (Xoo), respectively. Previously, we identified a defence-related (DR) gene encoding a small heat shock protein, OsHsp18.0-CI, that positively regulates BLS and BB resistance in rice. RESULTS: To reveal the regulatory mechanism of the OsHsp18.0-CI response to Xoc and Xoo, we characterized the class B heat shock factor (Hsf), OsHsfB4d, through transcriptional analysis and a transgenic study. OsHsfB4d is upregulated post inoculation by either the Xoc strain RS105 or Xoo strain PXO99a in Zhonghua 11 (wild type, ZH11) as well as in OsHsp18.0-CI overexpressing rice plants. Transient expression of OsHsfB4d can activate the expression of green fluorescent protein (GFP) and luciferase (Luc) via the OsHsp18.0-CI promoter. Rice plants overexpressing OsHsfB4d exhibited enhanced resistance to RS105 and PXO99a as well as increased expression of OsHsp18.0-CI and pathogenesis-related genes. Furthermore, we found that OsHsfB4d directly binds to a DNA fragment carrying the only perfect heat shock element (HSE) in the promoter of OsHsp18.0-CI. CONCLUSION: Overall, we reveal that OsHsfB4d, a class B Hsf, acts as a positive regulator of OsHsp18.0-CI to mediate BLS and BB resistance in rice.

SELECTION OF CITATIONS
SEARCH DETAIL
...