Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Theranostics ; 11(14): 6847-6859, 2021.
Article in English | MEDLINE | ID: mdl-34093857

ABSTRACT

Rationale: Differential activation of macrophages correlates closely with tumor progression, and the epigenetic factor lysine demethylase 6B (KDM6B, previously named JMJD3) mediates the regulation of macrophage polarization through an unknown mechanism. Methods: We developed a suspension coculture system comprising breast cancer cells and macrophages and used RT-qPCR and western blotting to measure KDM6B expression. Bioinformatics and luciferase reporter assays were used to identify candidate microRNAs of cancer cells responsible for the downregulation of KDM6B. To determine if exosomes mediated the transfer of miR-138-5p between cancer cells to macrophages, we treated macrophages with exosomes collected from the conditioned medium of cancer cells. The effects of exosomal miR-138-5p on macrophage polarization were measured using RT-qPCR, flow cytometry, and chromatin immunoprecipitation assays. We employed a mouse model of breast cancer, metastatic to the lung, to evaluate the effects on tumor metastasis of macrophages treated with miR-138-5p-enriched exosomes. To develop a diagnostic evaluation index, the levels of exosomal miR-138-5p in samples from patients with breast cancer were compared to those of controls. Results: Coculture of breast cancer cells led to downregulation of KDM6B expression in macrophages. Cancer cell-derived exosomal miR-138-5p inhibited M1 polarization and promoted M2 polarization through inhibition of KDM6B expression in macrophages. Macrophages treated with exosomal miR-138-5p promoted lung metastasis, and the level of circulating exosomal miR-138-5p positively correlated with the progression of breast cancer. Conclusion: Our data suggest that miR-138-5p was delivered from breast cancer cells to tumor-associated macrophages via exosomes to downregulate KDM6B expression, inhibit M1 polarization, and stimulate M2 polarization. Therefore, exosomal miR-138-5p represents a promising prognostic marker and target for the treatment of breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Exosomes/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Lung Neoplasms/metabolism , MicroRNAs/metabolism , Tumor-Associated Macrophages/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cell Line, Tumor , Chromatin Immunoprecipitation , Coculture Techniques , Down-Regulation , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Lung Neoplasms/genetics , Lung Neoplasms/secondary , Mice , Mice, Inbred BALB C , MicroRNAs/genetics , Neoplasm Metastasis/genetics
2.
Inflammation ; 44(4): 1359-1369, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33548006

ABSTRACT

Rheumatoid arthritis (RA) is a common chronic autoimmune disease featured by synovial inflammation. miR-496 is closely involved in various pathologic conditions. However, its role in RA has not yet been elucidated. Expression of miR-496 and MMP10 was determined based on the clinical samples with RA retrieved from the Gene Expression Omnibus (GEO) datasets. In vitro model of RA was constructed in MH7A cells stimulated by IL-1ß (10 ng/mL). Cell counting kit 8 (CCK-8) and flow cytometry experiments were implemented to investigate the cell viability and apoptosis rate of MH7A cells. TargetScan was applied to identify the targets of miR-496, and the regulation of miR-496 on MMP10 expression was validated by a dual-luciferase reporter gene assay. qRT-PCR and western blot analyses were conducted to examine the expression. miR-496 expression was decreased in RA tissues and MH7A cells after IL-1ß treatment. Overexpression of miR-496 significantly inhibited IL-1ß-treated MH7A cell viability. MMP10 was identified as a target of miR-496 and its expression was negatively regulated by miR-496. The effects of miR-496 on MH7A cell proliferation and apoptosis were reversed by MMP10. The activity of NF-κB pathway was associated with the miR-496/MMP10 axis in IL-1ß-stimulated MH7A cells. To summarize, this study demonstrated that miR-496 can impair the proliferative ability and facilitate the apoptosis of IL-1ß-treated MH7A through regulating MMP10 expression and NF-κB signaling pathway.


Subject(s)
Fibroblasts/metabolism , Interleukin-1beta/toxicity , Matrix Metalloproteinase 10/biosynthesis , MicroRNAs/biosynthesis , NF-kappa B/metabolism , Synoviocytes/metabolism , Cell Proliferation/drug effects , Cell Proliferation/physiology , Cell Survival/drug effects , Cell Survival/physiology , Fibroblasts/drug effects , Humans , Signal Transduction/physiology , Synoviocytes/drug effects
3.
Genes (Basel) ; 10(10)2019 10 17.
Article in English | MEDLINE | ID: mdl-31627420

ABSTRACT

Microaneurysms (MAs) are the earliest detectable diabetic retinopathy (DR) lesions. Thus, the ability to automatically detect MAs is critical for the early diagnosis of DR. However, achieving the accurate and reliable detection of MAs remains a significant challenge due to the size and complexity of retinal fundus images. Therefore, this paper presents a novel MA detection method based on a deep neural network with a multilayer attention mechanism for retinal fundus images. First, a series of equalization operations are performed to improve the quality of the fundus images. Then, based on the attention mechanism, multiple feature layers with obvious target features are fused to achieve preliminary MA detection. Finally, the spatial relationships between MAs and blood vessels are utilized to perform a secondary screening of the preliminary test results to obtain the final MA detection results. We evaluated the method on the IDRiD_VOC dataset, which was collected from the open IDRiD dataset. The results show that our method effectively improves the average accuracy and sensitivity of MA detection.


Subject(s)
Diabetic Retinopathy/diagnostic imaging , Image Processing, Computer-Assisted/methods , Microaneurysm/diagnostic imaging , Optical Imaging/methods , Algorithms , Fundus Oculi , Humans , Image Processing, Computer-Assisted/standards , Neural Networks, Computer , Optical Imaging/standards
4.
Hum Genet ; 138(7): 771-785, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31168774

ABSTRACT

Modulation of dystrophin pre-mRNA splicing is an attractive strategy to ameliorate the severe phenotype of Duchenne muscular dystrophy (DMD), although this requires a better understanding of the mechanism of splicing regulation. Aberrant splicing caused by gene mutations provides a good model to study splicing regulatory cis-elements and binding proteins. In this study, we identified skipping of in-frame exon 25 induced by a nonsense mutation (NM_004006.2:c.3340A > T;p.Lys1114*) in the DMD gene. Site-directed mutagenesis study in minigenes suggested that c.3340A > T converts an exonic splicing enhancer sequence (ESE) to a silencer element (ESS). Indeed, RNA pull-down and functional study provided evidence that c.3340A > T abolishes the binding of the splicing enhancer protein Tra2ß and promotes interactions with the repressor proteins hnRNP A1, hnRNP A2, and hnRNP H. By carefully analyzing the sequence motif encompassing the mutation site, we concluded that the skipping of exon 25 was due to disruption of a Tra2ß-dependent ESE and the creation of a new ESS associated with hnRNP A1 and hnRNP A2, which in turn increased the recruitment of hnRNP H to a nearby binding site. Finally, we demonstrated that c.3340A > T impairs the splicing of upstream intron 24 in a splicing minigene assay. In addition, we showed that the correct splicing of exon 25 is finely regulated by multiple splicing regulators that function in opposite directions by binding to closely located ESE and ESS. Our results clarify the detailed molecular mechanism of exon skipping induced by the nonsense mutation c.3340A > T and also provide information on exon 25 splicing.


Subject(s)
Dystrophin/genetics , Enhancer Elements, Genetic , Exons , Muscular Dystrophy, Duchenne/genetics , Mutation, Missense , RNA Splicing , Silencer Elements, Transcriptional , Adolescent , Gene Expression Regulation , Humans , Male , Muscular Dystrophy, Duchenne/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...