Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(22): 14020-14028, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38764286

ABSTRACT

The electrochemical CO2 reduction reaction (CO2RR) has emerged as a promising approach for sustainable carbon cycling and valuable chemical production. Various methods and strategies have been explored to boost CO2RR performance. One of the most promising strategies includes the construction of stable ionic interfaces on metallic or molecular catalysts using organic or inorganic cations, which has demonstrated a significant improvement in catalytic performance. The stable ionic interface is instrumental in adjusting adsorption behavior, influencing reactive intermediates, facilitating mass transportation, and suppressing the hydrogen evolution reaction, particularly under acidic conditions. In this Perspective, we provide an overview of the recent advancements in building ionic interfaces in the electrocatalytic process and discuss the application of this strategy to improve the CO2RR performance of metallic and molecular catalysts. We aim to convey the future trends and opportunities in creating ionic interfaces to further enhance carbon utilization efficiency and the productivity of CO2RR products. The emphasis of this Perspective lies in the pivotal role of ionic interfaces in catalysis, providing a valuable reference for future research in this critical field.

2.
Light Sci Appl ; 11(1): 56, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35273150

ABSTRACT

Revealing the photoluminescence (PL) origin and mechanism is a most vital but challenging topic of carbon dots. Herein, confined-domain crosslink-enhanced emission (CEE) effect was first studied by a well-designed model system of carbonized polymer dots (CPDs), serving as an important supplement to CEE in the aspect of spatial interactions. The "addition-condensation polymerization" strategy was adopted to construct CPDs with substituents exerting different degrees of steric hindrance. The effect of confined-domain CEE on the structure and luminescence properties of CPDs have been systematically investigated by combining characterizations and theoretical calculations. Such tunable spatial interactions dominated the coupling strength of the luminophores in one particle, and eventually resulted in the modulated PL properties of CPDs. These findings provide insights into the structural advantages and the PL mechanism of CPDs, which are of general significance to the further development of CPDs with tailored properties.

3.
ACS Appl Mater Interfaces ; 14(12): 14504-14512, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35290026

ABSTRACT

The rapid development of optical and electronic devices has driven up the demand of high performance optical protective films to avoid exterior influence and extend the service life. But it is not easy to obtain an ideal coating film with high transmittance, high hardness, and good flexibility. Herein, by taking advantage of the special core-shell structure of carbonized polymer dots (CPDs), we propose a strategy to build up a nanoscale soft-hard segment microstructure for optical protective coating materials. The CPDs with hard core and soft polymer chain shell are prepared from citric acid and (3-aminopropyl)triethoxysilane. The as-prepared CPDs can be converted directly to the coating film by the dehydration and cross-linking. In addition to the good optical transmittance, the final film exhibits simultaneously ultrahigh 9H pencil hardness to stand 4000 cycles of a steel-wool wear test, and excellent flexibility to stand bending and rolling-up.

4.
Nanoscale ; 13(45): 18925-18940, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34783816

ABSTRACT

Controlling the spin states of freedom represents a significant challenge for the next-generation optoelectronic and spintronic devices. Chiral metal-halide semiconductors (MHS) have recently emerged as an important class of materials for spin-dependent photonic and electronic applications. In this Minireview, we first discussed the chemical and structural diversity of chiral MHS, highlighting the chirality formation mechanism. We then provided our current understanding on the spin-sensitive photophysical and transport process with a focus on how chirality enables the spin selectivity in chiral MHS. We summarized recent progress on the experimental demonstration of spin control in various photonic and spintronic devices. Finally, we discussed ongoing challenges and opportunities associated with chiral MHS.

5.
Light Sci Appl ; 10(1): 142, 2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34253707

ABSTRACT

Carbon dots (CDs) have received immense attention in the last decade because they are easy-to-prepare, nontoxic, and tailorable carbon-based fluorescent nanomaterials. CDs can be categorized into three subgroups based on their morphology and chemical structure: graphene quantum dots (GQDs), carbon quantum dots (CQDs), and carbonized polymer dots (CPDs). The detailed structures of the materials can vary significantly, even within the same category. This property is particularly predominant in chemically synthesized CPDs, as their formation proceeds via the polymerization-carbonization of molecules or polymer precursors. Abundant precursors endow CPDs with versatile structures and properties. A wide variety of carbon nanomaterials can be grouped under the category of CPDs because of their observed diversity. It is important to understand the precursor-dependent structural diversity observed in CPDs. Appropriate nomenclature for all classes and types of CPDs is proposed for the better utilization of these emerging materials.

6.
Adv Mater ; 32(38): e2003315, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33252160

ABSTRACT

Monolayer organic crystals have attracted considerable attention due to their extraordinary optoelectronic properties. Solution self-assembly on the surface of water is an effective approach to fabricate monolayer organic crystals. However, due to the difficulties in controlling the spreading of organic solution on the water surface and the weak intermolecular interaction between the organic molecules, large-area growth of monolayer organic crystals remains a great challenge. Here, a graphene quantum dots (GQDs)-induced self-assembly method for centimeter-sized growth of monolayer organic crystals on a GQDs solution surface is reported. The spreading area of the organic solution can be readily controlled by tuning the pH value of the GQDs solution. Meanwhile, the π-π stacking interaction between the GQDs and the organic molecules can effectively reduce the nucleation energy of the organic molecules and afford a cohesive force to bond the crystals, enabling large-area growth of monolayer organic crystals. Using 2,7-didecyl benzothienobenzothiopene (C10-BTBT) as an examples, centimeter-sized monolayer C10-BTBT crystal with uniform molecular packing and crystal orientation is attained. Organic field-effect transistors based on the monolayer C10-BTBT crystals exhibit a high mobility up to 2.6 cm2 V-1 s-1, representing the highest mobility value for solution-assembled monolayer organic crystals. This work provides a feasible route for large-scale fabrication of monolayer organic crystals toward high-performance organic devices.

7.
Small ; 16(31): e2001295, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32529773

ABSTRACT

Exploitation and utilization of sustainable energy sources has increasingly become the common theme of global social development, which has promoted tremendous development of energy conversion devices/technologies. Owing to excellent and unique optical/electrical properties, carbon dots (CDs) have attracted extensive research interest for numerous energy conversion applications. Strong absorption, downconversion photoluminescence, electron acceptor/donor characteristics, and excellent electron conductivity endow CDs with enormous potential for applications in optoelectronic devices. Furthermore, excellent electron transfers/transport capacities and easily manipulable structural defects of CDs offer distinct advantages for electrocatalytic applications. Recent advances in CD-based energy conversion applications, including optoelectronic devices such as light-emitting diodes and solar cells, and electrocatalytic reactions including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, and carbon dioxide reduction reaction, are summarized. Finally, current challenges and future prospects for CD-based energy conversion applications are proposed, highlighting the importance of controllable structural design and modifications.

8.
Angew Chem Int Ed Engl ; 59(25): 9826-9840, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32056337

ABSTRACT

The crosslink-enhanced emission effect was first proposed to explore the strong luminescence of nonconjugated polymer dots possessing only either non-emissive or weakly emissive sub-luminophores. Interesting phenomena in recent research indicate such enhancement caused by extensive crosslinking appears in diverse luminescent polymers with sub-luminophores (electron-rich heteroatomic moieties) or luminophores (conjugated π domains). This enhancement can promote the emission from nonluminous to luminous, from weakly luminous to strongly luminous, and even convert the pathway of radiative transitions. The concept of the crosslink-enhanced emission effect should be updated and extended to an in-depth spatial effect, such as electron overlap and energy splitting in confined domains by effective crosslinking, more than initial immobilization. This Minireview outlines the development of the crosslink-enhanced emission effect from the perspective of the detailed classification, inherent mechanism and applicable systems. An outlook on the further exploration and application of this theory are also proposed.

9.
Adv Sci (Weinh) ; 6(23): 1901316, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31832313

ABSTRACT

Despite the various synthesis methods to obtain carbon dots (CDs), the bottom-up methods are still the most widely administrated route to afford large-scale and low-cost synthesis. However, as CDs are developed with increasing reports involved in producing many CDs, the structure and property features have changed enormously compared with the first generation of CDs, raising classification concerns. To this end, a new classification of CDs, named carbonized polymer dots (CPDs), is summarized according to the analysis of structure and property features. Here, CPDs are revealed as an emerging class of CDs with distinctive polymer/carbon hybrid structures and properties. Furthermore, deep insights into the effects of synthesis on the structure/property features of CDs are provided. Herein, the synthesis methods of CDs are also summarized in detail, and the effects of synthesis conditions of the bottom-up methods in terms of the structures and properties of CPDs are discussed and analyzed comprehensively. Insights into formation process and nucleation mechanism of CPDs are also offered. Finally, a perspective of the future development of CDs is proposed with critical insights into facilitating their potential in various application fields.

10.
J Phys Chem Lett ; 10(17): 5182-5188, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31424936

ABSTRACT

Carbon dots (CDs), as emerging luminescent nanomaterials, possess excellent but complex properties, bringing about extensive attention and a lot of controversy. In this Perspective, we put forward the concept of "carbonized polymer dots" and emphasize the important role of polymerization and carbonization during the formation of CDs. We explore the common characters and clarify the complicated relationship of CDs, based on the reasonable classification of graphene quantum dots, carbon quantum dots, and carbonized polymer dots. Moreover, different perspectives are provided for comprehensive analysis about the essence of CDs, including quantum dots, molecules, and polymers. The photoluminescence mechanism has been classified into molecule state, carbon core state, surface/edge state, and cross-link enhanced emission effect for further understanding of complicated phenomena.


Subject(s)
Carbon/chemistry , Polymers/chemistry , Quantum Dots/chemistry , Light , Luminescence , Quantum Theory
11.
Nanoscale ; 11(11): 5072-5079, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30840014

ABSTRACT

The photoluminescence (PL) mechanism plays a significant role in the study of carbonized polymer dots (CPDs). The supramolecular interaction exists in most materials, which offers innate methods to regulate the optical and physical properties. However, insights into the tunable red- and blue-shifted PL peaks of CPDs by the supramolecular interaction still remain elusive. Herein, the supramolecular interaction-triggered fluorescence change of CPDs is reported by the investigation of the piezochromic behaviors. The π-conjugated system and the hydroxy group are both critical to manipulate the PL of CPDs under high pressure. The π-π stacking of the π-conjugated system was enhanced with increasing pressure, which induces the red-shifting of PL peaks, while the hydroxyl-related hydrogen bond formation eventually causes a blue-shift. In addition, their chemical stability, low toxicity, and the tunable PL properties of CPDs by supramolecular interaction under high pressure would deepen the understanding of the fluorescence mechanism of CPDs, inspiring extensive application prospects in sensing and light-emitting diodes.

12.
Small ; 14(47): e1803072, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30307697

ABSTRACT

Water soluble nanocrystals (NCs) are promising materials in aqueous-processed solar cells because of their high extinction coefficient, low-cost, and favorable photoelectric characteristics. However, the power conversion efficiency (PCE) of the present aqueous-processed NC solar cells is restricted by the short depletion region of the active layer and limited Fermi level offset between NCs and the electron transport layer. Herein, these issues are effectively addressed by preparing Cdx Zn1- x Te NCs capped with 2-aminoethanethiol hydrochloride. The introduction of Zn2+ into CdTe NCs widens the Fermi level offset from 0.68 to 0.74 eV, lengthens the depletion region from 130 to 137 nm, and hence brings obvious improvement in the open circuit voltage (Voc ) and fill factor. Especially, the depletion region is successfully tuned from 137 to 171 nm, and even lengthened to a record thickness of 200 nm based on aqueous-processed solar cells. As a result, a champion thickness ratio (74%) of depletion region to active layer (200/270 nm) is achieved. A champion PCE of 5.96% and short-circuit current (Jsc ) of 21.2 mA cm-2 are achieved among aqueous-processed NC solar cells. This work provides a simple way to prepare polynary NCs and highlights a prospective method to develop more efficient and cost-effective solution-processed environment friendly solar cells.

13.
Langmuir ; 34(26): 7767-7775, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29886743

ABSTRACT

Zn2+-passivated carbon dots (named Z-CDs) were synthesized from zinc gluconate for the first time through a one-step pyrolysis treatment. The mechanism of Zn2+-enhanced fluorescence was carefully investigated, and a new strategy to passivate the surfaces of CDs by Zn2+ was proposed. Inspired by the complexation reaction between Zn2+ and ethylenediaminetetraacetic acid (EDTA), a reversible "off-on" fluorescent nanosensor for the detection of EDTA and Zn2+ was constructed based on the depassivation and repassivation of Z-CDs, with a limit of detection as low as 3.2 × 10-7 M and 5.1 × 10-7 M, respectively. The proposed Z-CD-based nanosensor had been further utilized for EDTA and Zn2+ monitoring in tap water with excellent recovery. To the best of our knowledge, this was the first report of a fluorescence-based sensor of EDTA and a turn-on sensor of Zn2+ based on CDs with reversible detection capability. Also, benefiting from the low toxicity of zinc, Z-CDs were applied for multicolor bioimaging and in vitro detection in cells.

14.
Adv Mater ; 30(31): e1800676, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29920795

ABSTRACT

Highly active, stable, and cheap Pt-free catalysts for the hydrogen evolution reaction (HER) are facing increasing demand as a result of their potential use in future energy-conversion systems. However, the development of HER electrocatalysts with Pt-like or even superior activity, in particular ones that can function under alkaline conditions, remains a significant challenge. Here, the synthesis of a novel carbon-loaded ruthenium nanoparticle electrocatalyst (Ru@CQDs) for the HER, using carbon quantum dots (CQDs), is reported. Electrochemical tests reveal that, even under extremely alkaline conditions (1 m KOH), the as-formed Ru@CQDs exhibits excellent catalytic behavior with an onset overpotential of 0 mV, a Tafel slope of 47 mV decade-1 , and good durability. Most importantly, it only requires an overpotential of 10 mV to achieve the current density of 10 mA cm-2 . Such catalytic characteristics are superior to the current commercial Pt/C and most noble metals, non-noble metals, and nonmetallic catalysts under basic conditions. These findings open a new field for the application of CQDs and add to the growing family of metal@CQDs with high HER performance.

15.
Chemistry ; 24(44): 11303-11308, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-29904946

ABSTRACT

Hydrothermal/solvothermal treatments have been widely used to prepare carbonized polymer dots (CPDs) through the condensation and carbonization of small molecules and/or polymers. However, the basic scientific issues, such as the nucleation and growth process, morphology and size control, yield increase, and photoluminescence (PL) mechanism have not been well investigated. In this work, enlightened by the principle of soap-free emulsion polymerization, CPDs with ultrahigh yields (ca. 85 %) were obtained by hydrothermal addition polymerization and carbonization (HAPC) of monomers. The unprecedented initiator-induced addition polymerization was exploited to synthesize CPDs for the first time. As expected in typical emulsion polymerization processes, the developed HAPC method can produce CPDs with designed sizes by systematically regulating the HAPC parameter, uncovering an unprecedented strategy for regulating the size of CPDs. In addition, the obtained CPDs were provided with high photoluminescence quantum yields (PLQY) up to 45.58 %, while the relationship between the photoluminescence (PL) mechanism and chemical structure was investigated. The viscosity parameter was first adopted to measure the polymer property of CPDs. Moreover, the ultrahigh yield and low-cost CPDs elicited the high-performance CPDs/PVA nanocomposite (PVA=poly(vinyl alcohol)) with fluorescence and room-temperature phosphorescence dual-mode emission, demonstrating potential for advanced anti-counterfeit applications.

16.
Angew Chem Int Ed Engl ; 57(9): 2393-2398, 2018 02 23.
Article in English | MEDLINE | ID: mdl-29356331

ABSTRACT

Polymer carbon dots (PCDs) are proposed as a new class of room-temperature phosphorescence (RTP) materials. The abundant energy levels in PCDs increase the probability of intersystem crossing (ISC) and their covalently crosslinked framework structures greatly suppress the nonradiative transitions. The efficient methods allow the manufacture of PCDs with unique RTP properties in air without additional metal complexation or complicated matrix composition. They thus provide a route towards the rational design of metal-free RTP materials that may be synthesized easily. Furthermore, we find that RTP is associated with a crosslink-enhanced emission (CEE) effect, which provides further routes to design improved PCDs with diverse RTP performance. Our results show the potential of PCDs as a universal route to achieve effective metal-free RTP.

17.
ACS Appl Mater Interfaces ; 10(15): 12262-12277, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-29164859

ABSTRACT

Involvement of clear photoluminescence (PL) mechanism in specific chemical structure is at the forefront of carbon dots (CDs). Supramolecular interaction exists in plenty of materials, offering an inherent way to administrate the optical and photophysical properties, especially in terms of newly developed polymer carbon dots (PCDs). However, supramolecular-interaction-derived PL regulation is always ignored in the shadow of many kinds of PL factors, and we still have a limited understanding on the distinct chemical structure and mechanism of supramolecular effect in PCDs. Herein, several distinct photoluminescent phenomena of PCDs under aqueous and solid state are reviewed in terms of supramolecular cross-linking, with highly emphasizing the importance of supramolecular cross-link-enhanced emission (SCEE) effects, and the regulated function of supramolecular interaction's intensity and types between PCDs for special PL behaviors of PCDs. In addition, we categorize the photoluminescent phenomena in PCDs into the following aspects: supramolecular cross-link-enhanced dilute-solution-state emission, concentration-controlled multicolor emission, supramolecular regulation for quenching-resistant solid-state fluorescence, as well as supramolecular cross-link-assisted room-temperature- phosphorescence (RTP) under solid states. Furthermore, the applications of PCDs in light-emitting diodes (LED), solar cells, and anticounterfeiting and data encryption, etc., are presented, based on the distinct supramolecular cross-link-regulated photoluminescent phenomena, especially the solid-state emission. Finally, a brief outlook is given, highlighting the currently existing problems and development direction of supramolecular cross-link-regulated emission in PCDs.

18.
ACS Appl Mater Interfaces ; 9(37): 31345-31351, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28876894

ABSTRACT

Aqueous-processed nanocrystal solar cells have attracted increasing attention due to the advantage of its environmentally friendly nature, which provides a promising approach for large-scale production. The urgent affair is boosting the power conversion efficiency (PCE) for further commercial applications. The low PCE is mainly attributed to the imperfect device structure, which leads to abundant nonradiative recombination at the interfaces. In this work, an environmentally friendly and efficient method is developed to improve the performance of aqueous-processed CdTe nanocrystal solar cells. Polymer/CdTe planar heterojunction solar cells (PHSCs) with optimized band alignment are constructed, which results in reduced interfacial charge recombination, enhanced carrier collection efficiency and built-in field. Finally, a champion PCE of 5.9%, which is a record for aqueous-processed solar cells based on CdTe nanocrystals, is achieved after optimizing the photovoltaic device.

19.
Angew Chem Int Ed Engl ; 56(22): 6187-6191, 2017 05 22.
Article in English | MEDLINE | ID: mdl-28378520

ABSTRACT

Piezochromic materials, which show color changes resulting from mechanical grinding or external pressure, can be used as mechanosensors, indicators of mechano-history, security papers, optoelectronic devices, and data storage systems. A class of piezochromic materials with unprecedented two-photon absorptive and yellow emissive carbon dots (CDs) was developed for the first time. Applied pressure from 0-22.84 GPa caused a noticeable color change in the luminescence of yellow emissive CDs, shifting from yellow (557 nm) to blue-green (491 nm). Moreover, first-principles calculations support transformation of the sp2 domains into sp3 -hybridized domains under high pressure. The structured CDs generated were captured by quenching the high-pressure phase to ambient conditions, thus greatly increasing the choice of materials available for a variety of applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...