Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.184
Filter
1.
Article in English | MEDLINE | ID: mdl-39291779

ABSTRACT

OBJECTIVE: Isolated REM sleep behavior disorder (iRBD) is considered as the strongest predictor of Parkinson's disease (PD). Reliable and accurate biomarkers for iRBD detection and the prediction of phenoconversion are in urgent need. This study aimed to investigate whether α-Synuclein (α-Syn) species in plasma neuron-derived extracellular vesicles (NDEVs) could differentiate between iRBD patients and healthy controls (HCs). METHODS: Nanoscale flow cytometry was used to detect α-Syn-containing NDEVs in plasma. RESULTS: A total of 54 iRBD patients and 53 HCs were recruited. The concentrations of total α-Syn, α-Syn aggregates, and phosphorylated α-Syn at Ser129 (pS129)-containing NDEVs in plasma of iRBD individuals were significantly higher than those in HCs (p < 0.0001 for all). In distinguishing between iRBD and HCs, the area under the receiver operating characteristic (ROC) curve (AUC) for an integrative model incorporating the levels of α-Syn, pS129, and α-Syn aggregate-containing NDEVs in plasma was 0.965. This model achieved a sensitivity of 94.3% and a specificity of 88.9%. In iRBD group, the concentrations of α-Syn aggregate-containing NDEVs exhibited a negative correlation with Sniffin' Sticks olfactory scores (r = -0.351, p = 0.039). Smokers with iRBD exhibited lower levels of α-Syn aggregates and pS129-containing NDEVs in plasma compared to nonsmokers (pα-Syn aggregates = 0.014; ppS129 = 0.003). INTERPRETATION: The current study demonstrated that the levels of total α-Syn, α-Syn aggregates, and pS129-containing NDEVs in the plasma of individuals with iRBD were significantly higher compared to HCs. The levels of α-Syn species-containing NDEVs in plasma may serve as biomarkers for iRBD.

2.
CNS Neurosci Ther ; 30(9): e14905, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39248455

ABSTRACT

AIMS: We aimed to investigate mesial temporal lobe abnormalities in mesial temporal lobe epilepsy (MTLE) patients with hypersynchronous (HYP) and low-voltage fast rhythms (LVF) onset identified by stereotactic electroencephalography (SEEG) and evaluate their diagnostic and prognostic value. METHODS: Fifty-one MTLE patients were categorized as HYP or LVF by SEEG. High-resolution MRI volume-based analysis and 18F-FDG-PET standard uptake values of hippocampal and amygdala subfields were quantified and compared with 57 matched controls. Further analyses were conducted to delineate the distinct pathological characteristics differentiating the two groups. Diagnostic and prognostic prediction performance of these biomarkers were assessed using receiver operating characteristic curves. RESULTS: LVF-onset individuals demonstrated ipsilateral amygdala enlargement (p = 0.048) and contralateral hippocampus hypermetabolism (p = 0.042), pathological results often accompany abnormalities in the temporal lobe cortex, while HYP-onset subjects had significant atrophy (p < 0.001) and hypometabolism (p = 0.013) in ipsilateral hippocampus and its subfields, as well as amygdala atrophy (p < 0.001), pathological results are highly correlated with hippocampal sclerosis. Severe fimbria atrophy was observed in cases of HYP-onset MTLE with poor prognosis (AUC = 0.874). CONCLUSION: Individuals with different seizure-onset patterns display specific morphological and metabolic abnormalities in the amygdala and hippocampus. Identifying these subfield abnormalities can improve diagnostic and prognostic precision, guiding surgical strategies for MTLE.


Subject(s)
Amygdala , Electroencephalography , Epilepsy, Temporal Lobe , Hippocampus , Magnetic Resonance Imaging , Positron-Emission Tomography , Stereotaxic Techniques , Humans , Female , Male , Amygdala/diagnostic imaging , Amygdala/metabolism , Amygdala/pathology , Adult , Hippocampus/diagnostic imaging , Hippocampus/pathology , Hippocampus/metabolism , Electroencephalography/methods , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/metabolism , Epilepsy, Temporal Lobe/surgery , Epilepsy, Temporal Lobe/pathology , Middle Aged , Magnetic Resonance Imaging/methods , Young Adult , Seizures/diagnostic imaging , Seizures/metabolism , Fluorodeoxyglucose F18
3.
Infect Drug Resist ; 17: 3777-3783, 2024.
Article in English | MEDLINE | ID: mdl-39229328

ABSTRACT

Background: Pulmonary infection is a common clinical complication associated with glucocorticoid. There have been no reported cases of mixed infections involving Nocardia and Pneumocystis jirovecii combined with anti-synthetase syndrome (ASS) activity. Methods: This study conducted a retrospective analysis of the clinical data from a patient with active ASS, treated for a pulmonary coinfection. Results: The patient exhibited fever, asthma, and cough as initial symptoms. Chest CT scan revealed multiple infiltration shadows, consolidation shadows, nodules, mass shadows, and internal cavities in both lungs. BALF mNGS detected Nocardia terpene and Pneumocystis jiroveci. Treatment with sulfamethoxazole/trimethoprim and corticosteroids led to an improvement. However, the patient experienced recurrent fever and a new rash with the reduction of the glucocorticoid dosage. Further investigation identified positive anti-Jo-1 and anti-Ro-52 antibodies and myogenic lesions on electromyography, which confirmed the diagnosis of ASS. Following treatment with immunoglobulin, methylprednisolone, and cyclosporine, the patient's condition significantly improved. Conclusion: Immunodeficiency patients are susceptible to opportunistic infections. mNGS is valuable for diagnosis and treatment. Although the image of Nocardia terpene and Pneumocystis jiroveci infections lack specificity, they exhibit distinctive features. Should fever and skin lesions reoccur post-effective anti-infective therapy, it is imperative to explore non-infectious causes and expedite autoantibody testing.

4.
Sci Total Environ ; 951: 175451, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39134277

ABSTRACT

Long-term trend forecast of chlorophyll-a concentration (Chla) holds significant implications for eutrophication management and pollution control planning on lakes, especially under the background of climate change. However, it is a challenging task due to the mixture of trend, seasonal and residual components in time series and the nonlinear relationships between Chla and the hydro-environmental factors. Here we developed a hybrid approach for long-term trend forecast of Chla in lakes, taking the Lake Taihu as an instantiation case, by the integration of Seasonal and Trend decomposition using Loess (STL), wavelet coherence, and Convolutional Neural Network with Bidirectional Long Short-Term Memory (CNN-BiLSTM). The results showed that long-term trends of Chla and the hydro-environmental factors could be effectively separated from the seasonal and residual terms by STL method, thereby enhancing the characterization of long-term variation. The resonance pattern and time lag between Chla and the hydro-environmental factors in the time-frequency domain were accurately identified by wavelet coherence. Chla responded quickly to variations in TP, but showed a time lag response to variations in WT in Lake Taihu. The forecasting method using multivariate and CNN-BiLSTM largely outperformed the other methods for Lake Taihu with regards to R2, RMSE, IOA and peak capture capability, owning to the combination of CNN for extracting local features and the integration of bidirectional propagation mechanism for the acquisition of higher-level features. The proposed hybrid deep learning approach offers an effective solution for the long-term trend forecast of algal blooms in eutrophic lakes and is capable of addressing the complex attributes of hydro-environmental data.


Subject(s)
Chlorophyll A , Deep Learning , Environmental Monitoring , Eutrophication , Lakes , Lakes/chemistry , Environmental Monitoring/methods , Chlorophyll A/analysis , China , Forecasting , Climate Change , Seasons , Chlorophyll/analysis
5.
Int J Biol Macromol ; 278(Pt 3): 134685, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39168729

ABSTRACT

Edible fungi are emerging as a valuable dietary fiber source with health benefits, where their bioactivity hinges on their structure. This study targets the structure-activity relationship of soluble dietary fibers from Lentinus edodes (LESDF), Agaricus bisporus (ABSDF), and Hericium erinaceus (HESDF), focusing on their impact on gut microbiota and health. We explored the properties and structures of edible fungi, finding their soluble fibers affect metabolites and gut microbiota by increasing gas and lowering pH. Among these, HESDF demonstrated superior effects (pH: △1.4 ± 0.07; Gas production: △24.5 ± 0.4 mL). Furthermore, different types of edible fungi dietary fiber exhibited distinct capabilities in promoting the production of short-chain fatty acids by gut microorganisms. For instance, ABSDF exceled in acetic acid production (26.12 ± 0.35 mM) and propionic acid production (9.50 ± 0.13 mM), while HESDF stood out in butyric acid production (17.86 ± 0.09 mM). LESDF showed higher levels of Phascolarctobacterium, ABSDF had elevated levels of Ruminococcus, and HESDF displayed increased levels of Faecalibacterium. These results contribute to our understanding of how soluble dietary fiber from different edible fungi impacts gut microbiota and offers insights for the development and utilization of these fibers as functional food.


Subject(s)
Dietary Fiber , Gastrointestinal Microbiome , Dietary Fiber/metabolism , Solubility , Fatty Acids, Volatile/metabolism , Agaricus/metabolism , Agaricus/chemistry , Shiitake Mushrooms/chemistry , Shiitake Mushrooms/metabolism , Humans , Fungi/metabolism , Hydrogen-Ion Concentration
6.
mSystems ; 9(9): e0083624, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39140732

ABSTRACT

The widespread sulfonamide resistance genes sul1, sul2, and sul3 in food and gut bacteria have attracted considerable attention. In this study, we assessed the in vivo fitness of sul gene-dependent sulfonamide-resistant Escherichia coli, using a murine model. High fitness costs were incurred for sul1 and sul3 gene-dependent E. coli strains in vivo. A fitness advantage was found in three of the eight mice after intragastric administration of sul2 gene-dependent E. coli strains. We isolated three compensatory mutant strains (CMSs) independently from three mice that outcompeted the parent strain P2 in vivo. Whole-genome sequencing revealed seven identical single nucleotide polymorphism (SNP) mutations in the three CMSs compared with strain P2, an additional SNP mutation in strain S2-2, and two additional SNP mutations in strain S2-3. Furthermore, tandem mass tag-based quantitative proteomic analysis revealed abundant differentially expressed proteins (DEPs) in the CMSs compared with P2. Of these, seven key fitness-related DEPs distributed in two-component systems, galactose and tryptophan metabolism pathways, were verified using parallel reaction monitoring analysis. The DEPs in the CMSs influenced bacterial motility, environmental stress tolerance, colonization ability, carbohydrate utilization, cell morphology maintenance, and chemotaxis to restore fitness costs and adapt to the mammalian gut environment.IMPORTANCESulfonamides are traditional synthetic antimicrobial agents used in clinical and veterinary medical settings. Their long-term excessive overuse has resulted in widespread microbial resistance, limiting their application for medical interventions. Resistance to sulfonamides is primarily conferred by the alternative genes sul1, sul2, and sul3 encoding dihydropteroate synthase in bacteria. Studying the potential fitness cost of these sul genes is crucial for understanding the evolution and transmission of sulfonamide-resistant bacteria. In vitro studies have been conducted on the fitness cost of sul genes in bacteria. In this study, we provide critical insights into bacterial adaptation and transmission using an in vivo approach.


Subject(s)
Drug Resistance, Bacterial , Escherichia coli , Sulfonamides , Animals , Escherichia coli/genetics , Escherichia coli/drug effects , Mice , Sulfonamides/pharmacology , Drug Resistance, Bacterial/genetics , Drug Resistance, Bacterial/drug effects , Escherichia coli Proteins/genetics , Polymorphism, Single Nucleotide/genetics , Genetic Fitness/drug effects , Anti-Bacterial Agents/pharmacology , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Mutation , Dihydropteroate Synthase/genetics , Dihydropteroate Synthase/metabolism , Whole Genome Sequencing , Female , Bacterial Proteins , Carrier Proteins
7.
Shock ; 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39178222

ABSTRACT

ABSTRACT: This study aimed to investigate the protective effect of pentoxifylline (PTX) on vascular endothelial dysfunction in uraemia. The human aortic endothelial cells (HAECs) required for the experiments were all obtained from the National Collection of Authenticated Cell Cultures (Salisbury, UK). The permeability of HAECs was assessed. Each group had six samples. Compared with the healthy volunteer group, HAEC proliferation in the 20% uraemia group was significantly inhibited after 72 h (p < 0.001), co-localisation of nucleotide-binding domain, leucine-rich repeat-containing receptor family pyrin domain-containing 3 (NLRP3) and apoptosis-associated speck-like (ASC) protein induced by uremic serum was enhanced (p < 0.01) and high mobility group box 1 (HMGB1) release was increased (0.594 ± 0.057, p = 0.03). The co-immunoprecipitation of NLRP3, ASC and HMGB1 induced by uremic toxin was also enhanced (p < 0.01), and PTX inhibited this phenomenon. The expression of NLRP3 (0.810 ± 0.032, p = 0.02) and caspase-1 (0.580 ± 0.041, p = 0.03) was increased, whereas the expression of ZO-1 (0.255 ± 0.038, p = 0.03) and VE-cadherin (0.0546 ± 0.053, p = 0.02) was decreased in the uraemia group; compared with the healthy volunteer group, treated with PTX (NLRP3, 0.298 ± 0.042, p = 0.03; caspase-1, 0.310 ± 0.021, p = 0.03; ZO-1, 0.412 ± 0.028, p = 0.02; VE-cadherin, 0.150 ± 0.034, p = 0.02) and MCC950 (NLRP3, 0.432 ± 0.022, p = 0.03; caspase-1, 0.067 ± 0.031, p > 0.05; ZO-1, 0.457 ± 0.026, p = 0.03; VE-cadherin, 0.286 ± 0.017, p = 0.03) lessened this trend. Pentoxifylline promoted the HAEC permeability mediated by uremic toxins (1.507 ± 0.012, p = 0.02). In conclusion, PTX enhances the release of HMGB1, which is dependent on NLRP3 activation, and consequently exerts positive effects on interconnecting proteins, ultimately leading to an improvement in vascular permeability.

8.
Nanotechnology ; 35(45)2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39137792

ABSTRACT

Low-cost, highly efficient thermoelectric thin-film materials are becoming increasingly popular as miniaturization progresses. Mg3Sb2has great potential due to its low cost and high performance. However, the fabrication of Mg3Sb2thin films with high power factors (PFs) poses a certain challenge. In this work, we propose a general approach to prepare Mg3Sb2thin films with excellent thermoelectric properties. Using a two-step thermal evaporation and rapid annealing process, (001)-oriented Mg3Sb2thin films are fabricated onc-plane-oriented Al2O3substrates. The structure of the film orientation is optimized by controlling the film thickness, which modulates the thermoelectric performance. The PF of the Mg3Sb2at 500 nm (14µW·m-1·K-2) would increase to 169µW·m-1·K-2with Ag doping (Mg3Ag0.02Sb2) at room temperature. This work provides a new strategy for the development of high-performance thermoelectric thin films at room temperature.

9.
Phytother Res ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120474

ABSTRACT

Calycosin (Caly), a flavonoid compound, demonstrates a variety of beneficial properties. However, the specific mechanisms behind Caly's anticancer effects remain largely unexplored. Network pharmacology was used to explore the potential targets of Caly in renal cancer. Additionally, RNA-seq sequencing was used to detect changes in genes in renal cancer cells after Caly treatment. Validation was carried out through quantitative reverse transcription-PCR and Western blot analysis. The luciferase reporter assay was applied to pinpoint the interaction site between MAZ and HAS2. Furthermore, the immunoprecipitation assay was utilized to examine the ubiquitination and degradation of MAZ. In vivo experiments using cell line-derived xenograft mouse models were performed to assess Calycosin's impact on cancer growth. Network pharmacology research suggests Caly plays a role in promoting apoptosis and inhibiting cell adhesion in renal cancer. In vitro, Caly has been observed to suppress proliferation, colony formation, and metastasis of renal cancer cells while also triggering apoptosis. Additionally, it appears to diminish hyaluronic acid synthesis by downregulating HAS2 expression. MAZ is identified as a transcriptional regulator of HAS2 expression. Calycosin further facilitates the degradation of MAZ via the ubiquitin-proteasome pathway. Notably, Caly demonstrates efficacy in reducing the growth of renal cell carcinoma xenograft tumors in vivo. Our findings indicate that Caly suppresses the proliferation, metastasis, and progression of renal cell carcinoma through its action on the MAZ/HAS2 signaling pathway. Thus, Caly represents a promising therapeutic candidate for the treatment of renal cell carcinoma.

10.
Gigascience ; 132024 Jan 02.
Article in English | MEDLINE | ID: mdl-39101782

ABSTRACT

BACKGROUND: Mobilization typing (MOB) is a classification scheme for plasmid genomes based on their relaxase gene. The host ranges of plasmids of different MOB categories are diverse, and MOB is crucial for investigating plasmid mobilization, especially the transmission of resistance genes and virulence factors. However, MOB typing of plasmid metagenomic data is challenging due to the highly fragmented characteristics of metagenomic contigs. RESULTS: We developed MOBFinder, an 11-class classifier, for categorizing plasmid fragments into 10 MOB types and a nonmobilizable category. We first performed MOB typing to classify complete plasmid genomes according to relaxase information and then constructed an artificial benchmark dataset of plasmid metagenomic fragments (PMFs) from those complete plasmid genomes whose MOB types are well annotated. Next, based on natural language models, we used word vectors to characterize the PMFs. Several random forest classification models were trained and integrated to predict fragments of different lengths. Evaluating the tool using the benchmark dataset, we found that MOBFinder outperforms previous tools such as MOBscan and MOB-suite, with an overall accuracy approximately 59% higher than that of MOB-suite. Moreover, the balanced accuracy, harmonic mean, and F1-score reached up to 99% for some MOB types. When applied to a cohort of patients with type 2 diabetes (T2D), MOBFinder offered insights suggesting that the MOBF type plasmid, which is widely present in Escherichia and Klebsiella, and the MOBQ type plasmid might accelerate antibiotic resistance transmission in patients with T2D. CONCLUSIONS: To the best of our knowledge, MOBFinder is the first tool for MOB typing of PMFs. The tool is freely available at https://github.com/FengTaoSMU/MOBFinder.


Subject(s)
Metagenomics , Plasmids , Plasmids/genetics , Metagenomics/methods , Humans , Software , Metagenome
11.
Small ; : e2405596, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39148195

ABSTRACT

The complexity of the multielement interaction in high-entropy alloys (HEAs) may provide more active sites to adapt different catalytic reaction steps in oxygen evolution reaction (OER). Investigating the correlation between structure and performance of HEAs electrocatalysts is both essential and challenging. In this work, FeCoNiCrMox HEA nanoparticles are successfully fabricated utilizing a unique nanofabrication method called inert gas condensation. With the increase of high-valence metal component Mo, the atomic structure amorphization and electronic structure reconstruction are unveiled. According to the X-ray photoelectron spectroscopy valence spectra, the d-band center of FeCoNiCrMox is ascending, and thus enhancing the adsorption energy. Synchrotron pair distribution function analysis reflects the degree of structural disorder and reveals a robust correlation with the intrinsic OER activities of the electrocatalysts. FeCoNiCrMo1.0 high-entropy metallic glass nanoparticles exhibit an outstanding OER performance with an ultralow overpotential of 294.5 mV at a high current density of 100 mA cm-2. This work brings fundamental and practical insights into the modulation mechanism of metal components of HEAs catalysts for developing OER.

12.
Bioorg Chem ; 151: 107684, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39094507

ABSTRACT

Twenty-nine sesquiterpenoids, including pseudoguaiane-type (1-11), eudesmane-type (12-23), and carabrane-type (24-29), have been identified from the plant Carpesium abrotanoides. Of them, compounds 1-4, 12-15, and 24-27, namely carpabrotins A-L, are twelve previously undescribed ones. Compound 3 possessed a pseudoguaiane backbone with a rearrangement modification at C-11, C-12 and C-13, while compound 4 suffered a carbon bond break between the C-4 and C-5 to form a rare 4,5-seco-pseudoguaiane lactone. Compounds 1-3, 5, 13-16 and 25-27 exhibited anti-inflammatory activity by inhibiting NO production in LPS-induced RAW264.7 macrophages with IC50 values less than 40 µM, while compounds 1, 2, 5, 13, 14, 16, and 25-27 showed significant inhibitory activity comparable to that of dexamethasone. The anti-atopic dermatitis (AD) effects of compounds 5 and 16 were tested according to 2,4-dinitrochlorobenzene (DNCB)-induced AD-like skin lesions in KM mice, and the results revealed that the major products 5 and 16 improved the histological features of AD-like skin lesions and mast cell infiltration in mice. This study suggested that sesquiterpenoids in C. abrotanoides should play a key role in its anti-inflammatory use.


Subject(s)
Asteraceae , Nitric Oxide , Sesquiterpenes , Animals , Mice , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Asteraceae/chemistry , RAW 264.7 Cells , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Molecular Structure , Structure-Activity Relationship , Dose-Response Relationship, Drug , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Macrophages/drug effects , Male
13.
J Control Release ; 374: 538-549, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39186984

ABSTRACT

Inflammatory bowel disease (IBD) is closely associated with dysregulated immune response, gut mucosal barrier, and microbiota. Conventional treatments suffer from inferior bioavailability and inadequate efficiency. Herein, we present a synergistic therapeutic strategy based on multifunctionalized probiotics to mitigate IBD through single oral administration. The probiotic (Escherichia coli Nissle 1917) is bioorthogonally conjugated with immunomodulators and subsequently encapsulated by an enteric coating. The viability and bioactivity of probiotics are not affected by the modifications. And the armored probiotics are able to resist the harsh environment of the stomach and shed their enteric coating in the intestinal tract, exposing immunomodulators to polarize pro-inflammatory M1-type macrophages into anti-inflammatory M2-type. In a mouse colitis model, orally administered multifunctionalized probiotics cooperatively alleviate IBD with increased body weight to 1.13 folds and decreased disease activity index to 0.43 folds, through downregulating the pro-inflammatory cytokines expression, upregulating the epithelial tight junction-associated proteins levels to restore the intestinal barrier, and increasing the microbiota richness and abundance. This work exhibits a feasible approach to construct functionalized orally administered probiotics for enhanced synergistic therapy of IBD.

14.
Sci Rep ; 14(1): 18173, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39107419

ABSTRACT

The effect of circumference and displacement of the third fracture fragment on fracture healing after intramedullary nailing of femoral shaft fractures with a third fracture fragment was investigated. A retrospective cohort study was conducted to analyze the data of 142 patients who suffered femoral shaft fractures with a third fracture fragment and were admitted to the First People's Hospital of Lianyungang from February 2016 to December 2021. According to the circumference of the third fracture fragments, these were divided into three types of type 1: 71 cases; type 2: 52 cases; and type 3: 19 cases. On the basis of the diaphyseal diameter, the degree of displacement of the third fracture fragment was classified into three degrees of degree I: 95 cases; degree II: 31 cases; and degree III: 16 cases. Postoperative follow-up was performed to compare the fracture healing rate, healing time, and the modified Radiographic Union Scale for Tibia (mRUST) at 9th month after surgery in each group. All 142 patients were followed up after operation, with an average of (14.7 ± 4.1) months, and the overall healing rate was 73.4%. When the third fracture fragments were displaced in degree II and III, the mRUST score at 9th month in the type 1 group was higher than that in the type 2 and 3 groups (P = 0.017). Logistic regression analysis showed that greater displacement of third fracture fragments and greater circumference were associated with lower fracture healing rates (P < 0.05). After intramedullary nailing of femoral fractures, the degree of third fragment displacement and circumference affect fracture healing, and the former has a greater impact. When the third fracture fragment is displaced to degree II or III and its circumference is type 2 or type 3, it significantly affects the fracture healing. Intraoperative intervention to reduce the distance of third displacement of the fragment is required to reduce the incidence of non-union.


Subject(s)
Femoral Fractures , Fracture Fixation, Intramedullary , Fracture Healing , Humans , Fracture Fixation, Intramedullary/methods , Fracture Fixation, Intramedullary/adverse effects , Femoral Fractures/surgery , Male , Female , Adult , Retrospective Studies , Middle Aged , Femur/surgery , Treatment Outcome , Aged
15.
Molecules ; 29(14)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39065014

ABSTRACT

Jujube (Ziziphus jujuba Mill.) is the first tree species in China, with a long history and abundant yield. However, fresh jujubes have a short shelf-life and are not resistant to storage. Therefore, more and more processed jujube products are being studied. These processed products can extend the shelf-life of jujubes and attract widespread attention for their rich functional nutrients. This review summarized changes in nutrients of fresh jujube and processed products and the research progress of different preparation methods of jujubes. Meanwhile, the pharmacological effects of bioactive components in jujube-based products were concluded. Jujube and its processed products contain rich polysaccharides, vitamin C, and other functional nutrients, which are beneficial to humans. As the initial processing method for jujubes, vacuum freezing or microwave drying have become the most commonly used and efficient drying methods. Additionally, processed jujube products cannot be separated from the maximum retention of nutrients and innovation of flavor. Fermentation is the main deep-processing method with broad development potential. In the future, chemical components and toxicological evaluation need to be combined with research to bring consumers higher quality functional jujube products and ensure the sustainable development of the jujube industry.


Subject(s)
Ziziphus , Ziziphus/chemistry , Food Handling/methods , Nutrients/analysis , Plant Extracts/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Humans , Polysaccharides/chemistry , Fermentation
16.
Int J Biol Sci ; 20(9): 3590-3620, 2024.
Article in English | MEDLINE | ID: mdl-38993563

ABSTRACT

Background: Renal cell carcinoma (RCC) is frequently accompanied by tumor thrombus in the venous system with an extremely dismal prognosis. The current Tumor Node Metastasis (TNM) stage and Mayo clinical classification do not appropriately identify preference-sensitive treatment. Therefore, there is an urgent need to develop a better ideal model for precision medicine. Methods: In this study, we developed a coagulation tumor thrombus signature for RCC with 10 machine-learning algorithms (101 combinations) based on a novel computational framework using multiple independent cohorts. Results: The established tumor thrombus coagulation-related risk stratification (TTCRRS) signature comprises 10 prognostic coagulation-related genes (CRGs). This signature could predict survival outcomes in public and in-house protein cohorts and showed high performance compared to 129 published signatures. Additionally, the TTCRRS signature was significantly related to some immune landscapes, immunotherapy response, and chemotherapy. Furthermore, we also screened out hub genes, transcription factors, and small compounds based on the TTCRRS signature. Meanwhile, CYP51A1 can regulate the proliferation and migration properties of RCC. Conclusions: The TTCRRS signature can complement the traditional anatomic TNM staging system and Mayo clinical stratification and provide clinicians with more therapeutic options.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Machine Learning , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Thrombosis , Prognosis , Cohort Studies
17.
Radiol Med ; 129(8): 1143-1155, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39060887

ABSTRACT

BACKGROUND: Accurately identifying patients with axillary pathologic complete response (pCR) after neoadjuvant chemotherapy (NAC) in breast cancer patients remains challenging. PURPOSE: To compare the feasibility of shear wave elastography (SWE) performed on breast tumors and axillary lymph nodes (LNs) in predicting the axillary status after NAC. MATERIALS AND METHODS: This prospective study included a total of 319 breast cancer patients with biopsy-proven positive node who received NAC followed by axillary lymph node dissection from 2019 to 2022. The correlations between shear wave velocity (SWV) and pathologic characteristics were analyzed separately for both breast tumors and LNs after NAC. We compared the performance of SWV between breast tumors and LNs in predicting the axillary status after NAC. Additionally, we evaluated the performance of the most significantly correlated pathologic characteristic in breast tumors and LNs to investigate the pathologic evidence supporting the use of breast or axilla SWE. RESULTS: Axillary pCR was achieved in 51.41% of patients with node-positive breast cancer. In breast tumors, there is a stronger correlation between SWV and collagen volume fraction (CVF) (r = 0.52, p < 0.001) compared to tumor cell density (TCD) (r = 0.37, p < 0.001). In axillary LNs, SWV was weakly correlated with CVF (r = 0.31, p = 0.177) and TCD (r = 0.29, p = 0.213). No significant correlation was found between SWV and necrosis proportion in breast tumors or axillary LNs. The predictive performances of both SWV and CVF for axillary pCR were found to be superior in breast tumors (AUC = 0.87 and 0.85, respectively) compared to axillary LNs (AUC = 0.70 and 0.74, respectively). CONCLUSION: SWE has the ability to characterize the extracellular matrix, and serves as a promising modality for evaluating axillary LNs after NAC. Notably, breast SWE outperform axilla SWE in determining the axillary status in breast cancer patients after NAC.


Subject(s)
Axilla , Breast Neoplasms , Elasticity Imaging Techniques , Lymph Nodes , Lymphatic Metastasis , Neoadjuvant Therapy , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Female , Elasticity Imaging Techniques/methods , Middle Aged , Prospective Studies , Adult , Lymph Nodes/diagnostic imaging , Lymph Nodes/pathology , Lymphatic Metastasis/diagnostic imaging , Aged , Feasibility Studies , Lymph Node Excision , Chemotherapy, Adjuvant
18.
Front Sports Act Living ; 6: 1383228, 2024.
Article in English | MEDLINE | ID: mdl-39045568

ABSTRACT

Background: Lumbosacral muscle strain (LMS) is common in Chinese elite trampoline athletes. Advanced lumbar muscle activation is necessary for postural control before upper extremity voluntary movements, called anticipatory postural adjustment to reduce internal postural interference (IPI). The potential of delayed lumbar muscle activation has been reported in patients with non-specific LBP (NLBP) in response to IPI. However, it remains unknown whether this effect exists in elite trampoline athletes. There is also limited literature reporting the rehabilitation of LMS in this population. This study first aimed to explore whether elite trampoline athletes with LMS experience delayed activation of lumbar muscles under IPI. The secondary aim was to preliminarily evaluate an integrative rehabilitation program's effectiveness. Materials and methods: Ten elite trampoline athletes with LMS were recruited and received 10 sessions of integrative rehabilitation, including extracorporeal shock wave therapy, acupuncture, Tui-na, and spine function exercises. At baseline and after all sessions, the relative activation time of the lumbar muscles under IPI in a modified rapid arm-rise test was used as a primary outcome measure. The secondary measures included a visual analog scale (VAS) and a questionnaire to assess low back pain (LBP) and athletic training performance. Results: The relative activation time of the lumbar muscles under IPI was delayed at baseline, but significantly decreased after the intervention (P < 0.05). The VAS was significantly decreased after the intervention (P < 0.05). There was no significant correlation between the difference in VAS and in activation time of the lumbar muscles before and after the intervention (P > 0.05). Conclusions: Elite trampoline athletes with LMS had delayed activation in their lumbar muscles under IPI. Integrative rehabilitation was effective in LBP relief and neuromuscular control of the lumbar muscles, and impacted positively on training performance. Future studies with a larger sample size, a control group, and long-term follow-ups are needed to further examine the efficacy of integrative rehabilitation in elite trampoline athletes with LMS. Additionally, the application of this approach in athletes with LMS or LBP in other sports, particularly those involving IPI, should be explored.

19.
Sci Rep ; 14(1): 16924, 2024 07 23.
Article in English | MEDLINE | ID: mdl-39043841

ABSTRACT

The current research focuses on the effects of nutritional supplementation and exercise on dialysis patients, but whether physical activity (PA) can reduce the risk of adverse outcomes for patients with different nutritional status is not clear. The maintenance hemodialysis (MHD) patients were recruited from April 2021 to April 2022. The information of PA was obtained from the international physical activity questionnaire (IPAQ). The outcomes were cardiovascular death, myocardial infarction, stroke, heart failure, atrial fibrillation, tumor and all-cause death. We used COX proportional risk model to estimate the association between PA and the outcomes of MHD patients. Patients are classified into two groups based on geriatric nutritional risk index (GNRI) and classified by age, and we used COX proportional risk model to estimate the association of PA and outcomes in subgroups. The isotemporal substitution model (ISM) was used to estimate the effects of replacing light physical activity (LPA) with moderate physical activity (MPA) or vigorous physical activity (VPA) on risk of cardiovascular events, tumors, and all-cause death in different subgroups. The effects of PA on ankle-brachial index (ABI) and body fat content were analyzed in different IPAQ groups. A total of 241 maintenance hemodialysis patients were included, 105 peoples developed cardiovascular death, myocardial infarction, stroke, heart failure, atrial fibrillation, tumor and all-cause death (43.6%). The median follow-up time was 12 months. MPA reduced the risk of outcome in MHD patients or high GNRI patients (40% vs 39%).In MHD patients who was under 65 years with high GNRI, MPA reduced cardiovascular death, myocardial infarction, stroke, heart failure, atrial fibrillation, tumor and all-cause death by 55%.PA reduced the risk of cardiovascular event by 65%, but did not reduce the risk of tumor or all-cause death. Replacing LPA with VPA did not improve clinical outcomes. It actually increases the risk of heart failure 0.4%. MPA reduced the risk of cardiovascular death, myocardial infarction, stroke, heart failure, atrial fibrillation, tumor, all-cause death in MHD patients under 65 years, while VPA had no health benefit.Trial registration: ChiCTR210050998.


Subject(s)
Cardiovascular Diseases , Exercise , Neoplasms , Nutritional Status , Renal Dialysis , Humans , Male , Renal Dialysis/adverse effects , Female , Middle Aged , Aged , Cardiovascular Diseases/mortality , Cardiovascular Diseases/etiology , Neoplasms/mortality , Cause of Death , Risk Factors , Proportional Hazards Models
20.
J Environ Manage ; 367: 121851, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39067342

ABSTRACT

A significant body of research has documented the profound changes in global atmospheric conditions during the COVID-19 pandemic. However, there is still an inadequate comprehensive comparison and assessment of countries before, during, and after the pandemic. Variations in restriction policies, human behaviors, and national traits lead to significant differences in how restriction policies affect atmospheric pollution. This study focuses on NO2, a pollutant with high temporal sensitivity, and utilizes the Oxford COVID-19 policy stringency index along with demographic information. Through spatial-temporal mapping, we analyzed NO2 emission fluctuations and calculated the emission changes in each country. Drawing from this analysis, we explored the relationships among these factors and found that over the span of 2019-2022, across 193 countries, global NO2 emissions displayed a distinct trajectory: initially decreasing, subsequently rebounding, and eventually fluctuating. Most countries exhibited seasonal variations in NO2 emissions. Additionally, the study uncovered a correlation between the stringency of COVID-19 policies and the reduction in NO2 emissions: as policies became stricter, emissions significantly decreased in most countries. In contrast, in countries with lower population densities, stricter policies paradoxically led to an increase in emissions. These findings underscore the importance of considering demographic factors and geographical context in the formulation and implementation of environmental policies.


Subject(s)
COVID-19 , Environmental Monitoring , Nitrogen Dioxide , Nitrogen Dioxide/analysis , Humans , Environmental Monitoring/methods , Air Pollution/analysis , Air Pollutants/analysis , SARS-CoV-2 , Remote Sensing Technology , Pandemics , Environmental Policy
SELECTION OF CITATIONS
SEARCH DETAIL