Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
aBIOTECH ; 1(2): 123-134, 2020 Apr.
Article in English | MEDLINE | ID: mdl-36304720

ABSTRACT

The Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein system (CRISPR/Cas) has recently become the most powerful tool available for genome engineering in various organisms. With efficient and proper expression of multiple guide RNAs (gRNAs), the CRISPR/Cas system is particularly suitable for multiplex genome editing. During the past several years, different CRISPR/Cas expression strategies, such as two-component transcriptional unit, single transcriptional unit, and bidirectional promoter systems, have been developed to efficiently express gRNAs as well as Cas nucleases. Significant progress has been made to optimize gRNA production using different types of promoters and RNA processing strategies such as ribozymes, endogenous RNases, and exogenous endoribonuclease (Csy4). Besides being constitutively and ubiquitously expressed, inducible and spatiotemporal regulations of gRNA expression have been demonstrated using inducible, tissue-specific, and/or synthetic promoters for specific research purposes. Most recently, the emergence of CRISPR/Cas ribonucleoprotein delivery methods, such as engineered nanoparticles, further revolutionized transgene-free and multiplex genome editing. In this review, we discuss current strategies and future perspectives for efficient expression and engineering of gRNAs with a goal to facilitate CRISPR/Cas-based multiplex genome editing.

2.
Plant Mol Biol ; 94(4-5): 531-548, 2017 07.
Article in English | MEDLINE | ID: mdl-28631168

ABSTRACT

KEY MESSAGE: The homologous genes OsbHLH068 and AtbHLH112 have partially redundant functions in the regulation of the salt stress response but opposite functions to control flowering in Arabidopsis. The transcription factor (TF) basic/Helix-Loop-Helix (bHLH) is important for plant growth, development, and stress responses. OsbHLH068, which is a homologous gene of AtbHLH112 that is up-regulated under drought and salt stresses, as indicated by previous microarray data analysis. However, the intrinsic function of OsbHLH068 remains unknown. In the present study, we characterized the function and compared the role of OsbHLH068 with that of its homolog, AtbHLH112. Histochemical GUS staining indicated that OsbHLH068 and AtbHLH112 share a similar expression pattern in transgenic Arabidopsis during the juvenile-to-adult phase transition. Heterologous overexpression of OsbHLH068 in Arabidopsis delays seed germination, decreases salt-induced H2O2 accumulation, and promotes root elongation, whereas AtbHLH112 knock-out mutant displays an opposite phenotype. Both OsbHLH068-overexpressing transgenic Arabidopsis seedlings and the Atbhlh112 mutant display a late-flowering phenotype. Moreover, the expression of OsbHLH068-GFP driven by an AtbHLH112 promoter can compensate for the germination deficiency in the Atbhlh112 mutant, but the delayed-flowering phenotype tends to be more severe. Further analysis by microarray and qPCR indicated that the expression of FT is down-regulated in both OsbHLH068-overexpressing Arabidopsis plants and Atbhlh112 mutant plants, whereas SOC1 but not FT is highly expressed in AtbHLH112-overexpressing Arabidopsis plants. A comparative transcriptomic analysis also showed that several stress-responsive genes, such as AtERF15 and AtPUB23, were affected in both OsbHLH068- and AtbHLH112-overexpressing transgenic Arabidopsis plants. Thus, we propose that OsbHLH068 and AtbHLH112 share partially redundant functions in the regulation of abiotic stress responses but have opposite functions to control flowering in Arabidopsis, presumably due to the evolutionary functional divergence of homolog-encoded proteins.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Oryza/metabolism , Plant Proteins/metabolism , Sodium Chloride/toxicity , Stress, Physiological/physiology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Flowers/growth & development , Gene Expression Regulation, Developmental/physiology , Gene Expression Regulation, Plant/physiology , Oryza/genetics , Plant Proteins/genetics , Plants, Genetically Modified
3.
Plant J ; 85(5): 648-59, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26833589

ABSTRACT

Rice (Oryza sativa) is one of the world's most important crops. Rice researchers make extensive use of insertional mutants for the study of gene function. Approximately half a million flanking sequence tags from rice insertional mutant libraries are publicly available. However, the relationship between genotype and phenotype is very weak. Transgenic plant assays have been used frequently for complementation, overexpression or antisense analysis, but sequence changes caused by callus growth, Agrobacterium incubation medium, virulence genes, transformation and selection conditions are unknown. We used high-throughput sequencing of DNA from rice lines derived from Tainung 67 to analyze non-transformed and transgenic rice plants for mutations caused by these parameters. For comparison, we also analyzed sequence changes for two additional rice varieties and four T-DNA tagged transformants from the Taiwan Rice Insertional Mutant resource. We identified single-nucleotide polymorphisms, small indels, large deletions, chromosome doubling and chromosome translocations in these lines. Using standard rice regeneration/transformation procedures, the mutation rates of regenerants and transformants were relatively low, with no significant differences among eight tested treatments in the Tainung 67 background and in the cultivars Taikeng 9 and IR64. Thus, we could not conclusively detect sequence changes resulting from Agrobacterium-mediated transformation in addition to those caused by tissue culture-induced somaclonal variation. However, the mutation frequencies within the two publically available tagged mutant populations, including TRIM transformants or Tos17 lines, were about 10-fold higher than the frequency of standard transformants, probably because mass production of embryogenic calli and longer callus growth periods were required to generate these large libraries.


Subject(s)
Genetic Association Studies/methods , Genetic Variation , Oryza/genetics , Transformation, Genetic/genetics , Agrobacterium/genetics , Clone Cells/metabolism , Crops, Agricultural/genetics , DNA, Bacterial/genetics , DNA, Plant/chemistry , DNA, Plant/genetics , Genotype , High-Throughput Nucleotide Sequencing/methods , INDEL Mutation , Mutagenesis, Insertional , Oryza/classification , Phenotype , Plants, Genetically Modified , Ploidies , Polymorphism, Single Nucleotide , Species Specificity , Taiwan , Tissue Culture Techniques/methods
4.
Structure ; 12(9): 1595-605, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15341725

ABSTRACT

We describe the crystal structure of Rv1626 from Mycobacterium tuberculosis at 1.48 A resolution and the corresponding solution structure determined from small angle X-ray scattering. The N-terminal domain shows structural homology to the receiver domains found in bacterial two-component systems. The C-terminal domain has high structural homology to a recently discovered RNA binding domain involved in transcriptional antitermination. The molecule in solution was found to be monomeric as it is in the crystal, but in solution it undergoes a conformational change that is triggered by changes in ionic strength. This is the first structure that links the phosphorylation cascade of the two-component systems with the antitermination event in the transcriptional machinery. Rv1626 belongs to a family of proteins, which we propose calling phosphorylation-dependent transcriptional antitermination regulators, so far only found in bacteria, and includes NasT, a protein from the assimilatory nitrate/nitrite reductase operon of Azetobacter vinelandii.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Mycobacterium tuberculosis/chemistry , Protein Structure, Tertiary , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Crystallography, X-Ray , DNA-Binding Proteins/chemistry , Escherichia coli Proteins/chemistry , Models, Molecular , Molecular Sequence Data , Mycobacterium tuberculosis/genetics , Protein Structure, Secondary , RNA-Binding Proteins/genetics , Sequence Alignment , Trans-Activators/chemistry , Trans-Activators/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...