Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Publication year range
1.
Nano Lett ; 24(34): 10631-10641, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39150779

ABSTRACT

Mild photothermal therapy (PTT) shows the potential for chemosensitization by tumor-localized P-glycoprotein (P-gp) modulation. However, conventional mild PTT struggles with real-time uniform temperature control, obscuring the temperature-performance relationship and resulting in thermal damage. Besides, the time-performance relationship and the underlying mechanism of mild PTT-mediated P-gp reversal remains elusive. Herein, we developed a temperature self-limiting lipid nanosystem (RFE@PD) that integrated a reversible organic heat generator (metal-phenolic complexes) and metal chelator (deferiprone, DFP) encapsulated phase change material. Upon NIR irradiation, RFE@PD released DFP for blocking ligand-metal charge transfer to self-limit temperature below 45 °C, and rapidly reduced P-gp within 3 h via Ubiquitin-proteasome degradation. Consequently, the DOX·HCl-loaded thermo-chemotherapeutic lipid nanosystem (RFE@PD-DOX) led to dramatically improved drug accumulation and 5-fold chemosensitization in MCF-7/ADR tumor models by synchronizing P-gp reversal and drug pulse liberation, achieving a tumor inhibition ratio of 82.42%. This lipid nanosystem integrated with "intrinsic temperature-control" and "temperature-responsive pulse release" casts new light on MDR tumor therapy.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Doxorubicin , Humans , Doxorubicin/chemistry , Doxorubicin/pharmacology , Doxorubicin/administration & dosage , Doxorubicin/therapeutic use , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Lipids/chemistry , MCF-7 Cells , Photothermal Therapy , Drug Resistance, Neoplasm/drug effects , Mice , Temperature , Nanoparticles/chemistry , Drug Liberation , Antineoplastic Agents/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Drug Resistance, Multiple/drug effects
2.
Sheng Wu Gong Cheng Xue Bao ; 38(12): 4615-4629, 2022 Dec 25.
Article in Chinese | MEDLINE | ID: mdl-36593197

ABSTRACT

Transketolase (EC 2.2.1.1, TK) is a thiamine diphosphate-dependent enzyme that catalyzes the transfer of a two-carbon hydroxyacetyl unit with reversible C-C bond cleavage and formation. It is widely used in the production of chemicals, drug precursors, and asymmetric synthesis by cascade enzyme catalysis. In this paper, the activity of transketolase TKTA from Escherichia coli K12 on non-phosphorylated substrates was enhanced through site-directed saturation mutation and combined mutation. On this basis, the synthesis of tartaric semialdehyde was explored. The results showed that the optimal reaction temperature and pH of TKTA_M (R358I/H461S/R520Q) were 32 ℃ and 7.0, respectively. The specific activity on d-glyceraldehyde was (6.57±0.14) U/mg, which was 9.25 times higher than that of the wild type ((0.71±0.02) U/mg). Based on the characterization of TKTA_M, tartaric acid semialdehyde was synthesized with 50 mmol/L 5-keto-d-gluconate and 50 mmol/L non-phosphorylated ethanolaldehyde. The final yield of tartaric acid semialdehyde was 3.71 g with a molar conversion rate of 55.34%. Hence, the results may facilitate the preparation of l-(+)-tartaric acid from biomass, and provide an example for transketolase-catalyzed non-phosphorylated substrates.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Transketolase/genetics , Transketolase/chemistry , Tartrates , Escherichia coli Proteins/genetics
3.
ACS Appl Bio Mater ; 2(2): 874-883, 2019 Feb 18.
Article in English | MEDLINE | ID: mdl-35016291

ABSTRACT

We designed a multifunctional platform by coloading DOX, an antitumor drug, and imiquimod (R837), an immune adjuvant against Toll-like-receptor-7 (TLR-7), onto polydopamine nanoparticles (PDA NPs), a photothermal therapy (PTT) agent, to develop PDA/DOX&R837 NPs used as combined photothermal therapy, chemotherapy, and immunotherapy in order to enhance the cancer therapeutic effects. For a high delivery to malignant tumors, a folate ligand-receptor recognition molecule was grafted to the nanoparticle surface for a higher cellular uptake efficiency. The particle size, ζ potential, morphology, drug loading content, and drug release profiles of FA-PDA/DOX&R837 NPs were investigated. The antitumor effects under near-infrared (NIR) laser radiation were evaluated, and our results showed that a three-mode strategy combined therapy was significantly superior to single-mode therapy for tumor suppression. The synergetic toxicity of hyperthermia and DOX almost completely eliminated tumors, and together with R837, they further promoted the maturation of dendritic cells to induce a strong antitumor immune response, making tumor recurrence substantially lower than that without R837. This platform can be used as a potential targeted drug delivery system for combined cancer therapy.

SELECTION OF CITATIONS
SEARCH DETAIL