Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
EMBO Rep ; 25(5): 2375-2390, 2024 May.
Article in English | MEDLINE | ID: mdl-38594391

ABSTRACT

Cancer patients undergoing treatment with antineoplastic drugs often experience chemotherapy-induced neuropathic pain (CINP), and the therapeutic options for managing CINP are limited. Here, we show that systemic paclitaxel administration upregulates the expression of neurotrophin-3 (Nt3) mRNA and NT3 protein in the neurons of dorsal root ganglia (DRG), but not in the spinal cord. Blocking NT3 upregulation attenuates paclitaxel-induced mechanical, heat, and cold nociceptive hypersensitivities and spontaneous pain without altering acute pain and locomotor activity in male and female mice. Conversely, mimicking this increase produces enhanced responses to mechanical, heat, and cold stimuli and spontaneous pain in naive male and female mice. Mechanistically, NT3 triggers tropomyosin receptor kinase C (TrkC) activation and participates in the paclitaxel-induced increases of C-C chemokine ligand 2 (Ccl2) mRNA and CCL2 protein in the DRG. Given that CCL2 is an endogenous initiator of CINP and that Nt3 mRNA co-expresses with TrkC and Ccl2 mRNAs in DRG neurons, NT3 likely contributes to CINP through TrkC-mediated activation of the Ccl2 gene in DRG neurons. NT3 may be thus a potential target for CINP treatment.


Subject(s)
Chemokine CCL2 , Ganglia, Spinal , Neuralgia , Neurons , Neurotrophin 3 , Paclitaxel , Receptor, trkC , Animals , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Neuralgia/chemically induced , Neuralgia/metabolism , Neuralgia/genetics , Paclitaxel/adverse effects , Paclitaxel/pharmacology , Neurotrophin 3/metabolism , Neurotrophin 3/genetics , Male , Mice , Neurons/metabolism , Neurons/drug effects , Female , Receptor, trkC/metabolism , Receptor, trkC/genetics , Antineoplastic Agents/adverse effects , RNA, Messenger/metabolism , RNA, Messenger/genetics
2.
Br J Pharmacol ; 181(5): 735-751, 2024 03.
Article in English | MEDLINE | ID: mdl-37782223

ABSTRACT

BACKGROUND AND PURPOSE: Peripheral nerve trauma-induced dysregulation of pain-associated genes in the primary sensory neurons of dorsal root ganglion (DRG) contributes to neuropathic pain genesis. RNA-binding proteins participate in gene transcription. We hypothesized that RALY, an RNA-binding protein, participated in nerve trauma-induced dysregulation of DRG pain-associated genes and nociceptive hypersensitivity. METHODS AND RESULTS: Immunohistochemistry staining showed that RALY was expressed exclusively in the nuclei of DRG neurons. Peripheral nerve trauma caused by chronic constriction injury (CCI) of unilateral sciatic nerve produced time-dependent increases in the levels of Raly mRNA and RALY protein in injured DRG. Blocking this increase through DRG microinjection of adeno-associated virus 5 (AAV5)-expressing Raly shRNA reduced the CCI-induced elevation in the amount of eukaryotic initiation factor 4 gamma 2 (Eif4g2) mRNA and Eif4g2 protein in injured DRG and mitigated the development and maintenance of CCI-induced nociceptive hypersensitivity, without altering basal (acute) response to noxious stimuli and locomotor activity. Mimicking DRG increased RALY through DRG microinjection of AAV5 expressing Raly mRNA up-regulated the expression of Eif4g2 mRNA and Eif4g2 protein in the DRG and led to hypersensitive responses to noxious stimuli in the absence of nerve trauma. Mechanistically, CCI promoted the binding of RALY to the promoter of Eif4g2 gene and triggered its transcriptional activity. CONCLUSION AND IMPLICATIONS: Our findings indicate that RALY participates in nerve trauma-induced nociceptive hypersensitivity likely through transcriptionally triggering Eif4g2 expression in the DRG. RALY may be a potential target in neuropathic pain management.


Subject(s)
Hyperalgesia , Neuralgia , Ganglia, Spinal/metabolism , Gene Expression , Heterogeneous-Nuclear Ribonucleoprotein Group C/genetics , Heterogeneous-Nuclear Ribonucleoprotein Group C/metabolism , Hyperalgesia/genetics , Hyperalgesia/metabolism , Neuralgia/genetics , Neuralgia/metabolism , Nociception , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sensory Receptor Cells/metabolism
3.
Transl Res ; 263: 15-27, 2024 01.
Article in English | MEDLINE | ID: mdl-37607607

ABSTRACT

Nerve injury-induced alternations of gene expression in primary sensory neurons of the dorsal root ganglion (DRG) are molecular basis of neuropathic pain genesis. Transcription factors regulate gene expression. In this study, we examined whether early B cell factor 1 (EBF1), a transcription factor, in the DRG, participated in neuropathic pain caused by chronic constriction injury (CCI) of the sciatic nerve. EBF1 was distributed exclusively in the neuronal nucleus and coexpressed with cytoplasmic/membrane Kv1.2 in individual DRG neurons. The expression of Ebf1 mRNA and protein was time-dependently downregulated in the ipsilateral lumbar (L) 3/4 DRGs after unilateral CCI. Rescuing this downregulation through microinjection of the adeno-associated virus 5 expressing full-length Ebf1 mRNA into the ipsilateral L3/4 DRGs reversed the CCI-induced decrease of DRG Kv1.2 expression and alleviated the development and maintenance of mechanical, heat and cold hypersensitivities. Conversely, mimicking the downregulation of DRG EBF1 through microinjection of AAV5-expressing Ebf1 shRNA into unilateral L3/4 DRGs produced a reduction of Kv1.2 expression in the ipsilateral L3/4 DRGs, spontaneous pain, and the enhanced responses to mechanical, heat and cold stimuli in naive mice. Mechanistically, EBF1 not only bound to the Kcna2 gene (encoding Kv1.2) promoter but also directly activated its activity. CCI decreased the EBF1 binding to the Kcna2 promoter in the ipsilateral L3/4 DRGs. Our findings suggest that DRG EBF1 downregulation contributes to neuropathic pain likely by losing its binding to Kcna2 promoter and subsequently silencing Kv1.2 expression in primary sensory neurons. Exogenous EBF1 administration may mitigate neuropathic pain by rescuing DRG Kv1.2 expression.


Subject(s)
Neuralgia , Transcription Factors , Animals , Mice , Gene Expression Regulation , Hyperalgesia/genetics , Neuralgia/genetics , RNA, Messenger/metabolism , Sensory Receptor Cells , Transcription Factors/genetics , Kv1.2 Potassium Channel/metabolism
4.
Brain ; 146(9): 3866-3884, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37012681

ABSTRACT

Nerve injury to peripheral somatosensory system causes refractory neuropathic pain. Maladaptive changes of gene expression in primary sensory neurons are considered molecular basis of this disorder. Long non-coding RNAs (lncRNAs) are key regulators of gene transcription; however, their significance in neuropathic pain remains largely elusive.Here, we reported a novel lncRNA, named sensory neuron-specific lncRNA (SS-lncRNA), for its expression exclusively in dorsal root ganglion (DRG) and trigeminal ganglion. SS-lncRNA was predominantly expressed in small DRG neurons and significantly downregulated due to a reduction of early B cell transcription factor 1 in injured DRG after nerve injury. Rescuing this downregulation reversed a decrease of the calcium-activated potassium channel subfamily N member 1 (KCNN1) in injured DRG and alleviated nerve injury-induced nociceptive hypersensitivity. Conversely, DRG downregulation of SS-lncRNA reduced the expression of KCNN1, decreased total potassium currents and afterhyperpolarization currents and increased excitability in DRG neurons and produced neuropathic pain symptoms.Mechanistically, downregulated SS-lncRNA resulted in the reductions of its binding to Kcnn1 promoter and heterogeneous nuclear ribonucleoprotein M (hnRNPM), consequent recruitment of less hnRNPM to the Kcnn1 promoter and silence of Kcnn1 gene transcription in injured DRG.These findings indicate that SS-lncRNA may relieve neuropathic pain through hnRNPM-mediated KCNN1 rescue in injured DRG and offer a novel therapeutic strategy specific for this disorder.


Subject(s)
Neuralgia , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Sensory Receptor Cells/metabolism , Neuralgia/therapy , Small-Conductance Calcium-Activated Potassium Channels/genetics
5.
Pain ; 164(1): 119-131, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35507368

ABSTRACT

ABSTRACT: Nerve trauma-induced alternations of gene expression in the neurons of dorsal root ganglion (DRG) participate in nerve trauma-caused nociceptive hypersensitivity. Transcription factors regulate gene expression. Whether the transcription factor E74-like factor 1 (ELF1) in the DRG contributes to neuropathic pain is unknown. We report here that peripheral nerve trauma caused by chronic constriction injury (CCI) of unilateral sciatic nerve or unilateral fourth lumbar spinal nerve ligation led to the time-dependent increases in the levels of Elf1 mRNA and ELF1 protein in injured DRG, but not in the spinal cord. Preventing this increase through DRG microinjection of adeno-associated virus 5 expressing Elf1 shRNA attenuated the CCI-induced upregulation of matrix metallopeptidase 9 (MMP9) in injured DRG and induction and maintenance of nociceptive hypersensitivities, without changing locomotor functions and basal responses to acute mechanical, heat, and cold stimuli. Mimicking this increase through DRG microinjection of AAV5 expressing full-length Elf1 upregulated DRG MMP9 and produced enhanced responses to mechanical, heat, and cold stimuli in naive mice. Mechanistically, more ELF1 directly bond to and activated Mmp9 promoter in injured DRG neurons after CCI. Our data indicate that ELF1 participates in nerve trauma-caused nociceptive hypersensitivity likely through upregulating MMP9 in injured DRG. E74-like factor 1 may be a new target for management of neuropathic pain.


Subject(s)
Metalloproteins , Neuralgia , Animals , Mice , Ganglia, Spinal/metabolism , Hyperalgesia/metabolism , Matrix Metalloproteinase 9 , Metalloproteins/metabolism , Neuralgia/metabolism , Neurons/metabolism , Nociception
6.
J Clin Invest ; 132(13)2022 07 01.
Article in English | MEDLINE | ID: mdl-35775484

ABSTRACT

Maladaptive changes of nerve injury-associated genes in dorsal root ganglia (DRGs) are critical for neuropathic pain genesis. Emerging evidence supports the role of long noncoding RNAs (lncRNAs) in regulating gene transcription. Here we identified a conserved lncRNA, named nerve injury-specific lncRNA (NIS-lncRNA) for its upregulation in injured DRGs exclusively in response to nerve injury. This upregulation was triggered by nerve injury-induced increase in DRG ELF1, a transcription factor that bound to the NIS-lncRNA promoter. Blocking this upregulation attenuated nerve injury-induced CCL2 increase in injured DRGs and nociceptive hypersensitivity during the development and maintenance periods of neuropathic pain. Mimicking NIS-lncRNA upregulation elevated CCL2 expression, increased CCL2-mediated excitability in DRG neurons, and produced neuropathic pain symptoms. Mechanistically, NIS-lncRNA recruited more binding of the RNA-interacting protein FUS to the Ccl2 promoter and augmented Ccl2 transcription in injured DRGs. Thus, NIS-lncRNA participates in neuropathic pain likely by promoting FUS-triggered DRG Ccl2 expression and may be a potential target in neuropathic pain management.


Subject(s)
Neuralgia , Peripheral Nerve Injuries , RNA, Long Noncoding , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Humans , Neuralgia/genetics , Neuralgia/metabolism , Neuralgia/pathology , Peripheral Nerve Injuries/genetics , Peripheral Nerve Injuries/metabolism , Peripheral Nerve Injuries/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
7.
Adv Sci (Weinh) ; 8(13): e2004515, 2021 07.
Article in English | MEDLINE | ID: mdl-34383386

ABSTRACT

Nerve injury-induced maladaptive changes of gene expression in dorsal root ganglion (DRG) neurons contribute to neuropathic pain. Long non-coding RNAs (lncRNAs) are emerging as key regulators of gene expression. Here, a conserved lncRNA is reported, named DRG-specifically enriched lncRNA (DS-lncRNA) for its high expression in DRG neurons. Peripheral nerve injury downregulates DS-lncRNA in injured DRG due, in part, to silencing of POU domain, class 4, transcription factor 3, a transcription factor that interacts with the DS-lncRNA gene promoter. Rescuing DS-lncRNA downregulation blocks nerve injury-induced increases in the transcriptional cofactor RALY-triggered DRG Ehmt2 mRNA and its encoding G9a protein, reverses the G9a-controlled downregulation of opioid receptors and Kcna2 in injured DRG, and attenuates nerve injury-induced pain hypersensitivities in male mice. Conversely, DS-lncRNA downregulation increases RALY-triggered Ehmt2/G9a expression and correspondingly decreases opioid receptor and Kcna2 expression in DRG, leading to neuropathic pain symptoms in male mice in the absence of nerve injury. Mechanistically, downregulated DS-lncRNA promotes more binding of increased RALY to RNA polymerase II and the Ehmt2 gene promoter and enhances Ehmt2 transcription in injured DRG. Thus, downregulation of DS-lncRNA likely contributes to neuropathic pain by negatively regulating the expression of RALY-triggered Ehmt2/G9a, a key neuropathic pain player, in DRG neurons.


Subject(s)
Ganglia, Spinal/metabolism , Heterogeneous-Nuclear Ribonucleoprotein Group C/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Neuralgia/metabolism , RNA, Long Noncoding/metabolism , Animals , Down-Regulation , Gene Expression Regulation , Male , Mice , Nociception
8.
Stroke ; 52(7): 2393-2403, 2021 07.
Article in English | MEDLINE | ID: mdl-34102854

ABSTRACT

Background and Purpose: Hemorrhage-caused gene changes in the thalamus likely contribute to thalamic pain genesis. RNA N6-methyladenosine modification is an additional layer of gene regulation. Whether FTO (fat-mass and obesity-associated protein), an N6-methyladenosine demethylase, participates in hemorrhage-induced thalamic pain is unknown. Methods: Expression of Fto mRNA and protein was assessed in mouse thalamus after hemorrhage caused by microinjection of Coll IV (type IV collagenase) into unilateral thalamus. Effect of intraperitoneal administration of meclofenamic acid (a FTO inhibitor) or microinjection of adeno-associated virus 5 (AAV5) expressing Cre into the thalamus of Ftofl/fl mice on the Coll IV microinjection­induced TLR4 (Toll-like receptor 4) upregulation and nociceptive hypersensitivity was examined. Effect of thalamic microinjection of AAV5 expressing Fto (AAV5-Fto) on basal thalamic TLR4 expression and nociceptive thresholds was also analyzed. Additionally, level of N6-methyladenosine in Tlr4 mRNA and its binding to FTO or YTHDF2 (YTH N6-methyladenosine RNA binding protein 2) were observed. Results: FTO was detected in neuronal nuclei of thalamus. Level of FTO protein, but not mRNA, was time-dependently increased in the ipsilateral thalamus on days 1 to 14 after Coll IV microinjection. Intraperitoneal injection of meclofenamic acid or adeno-associated virus-5 expressing Cre microinjection into Ftofl/fl mouse thalamus attenuated the Coll IV microinjection­induced TLR4 upregulation and tissue damage in the ipsilateral thalamus and development and maintenance of nociceptive hypersensitivities on the contralateral side. Thalamic microinjection of AAV5-Fto increased TLR4 expression and elicited hypersensitivities to mechanical, heat and cold stimuli. Mechanistically, Coll IV microinjection produced an increase in FTO binding to Tlr4 mRNA, an FTO-dependent loss of N6-methyladenosine sites in Tlr4 mRNA and a reduction in the binding of YTHDF2 to Tlr4 mRNA in the ipsilateral thalamus. Conclusions: Our findings suggest that FTO participates in hemorrhage-induced thalamic pain by stabilizing TLR4 upregulation in thalamic neurons. FTO may be a potential target for the treatment of this disorder.


Subject(s)
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/biosynthesis , Cerebral Hemorrhage/metabolism , Neuralgia/metabolism , Neurons/metabolism , Thalamus/metabolism , Toll-Like Receptor 4/biosynthesis , Adenosine/administration & dosage , Adenosine/analogs & derivatives , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Animals , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/pathology , Gene Knockdown Techniques/methods , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microinjections/methods , Neuralgia/genetics , Neuralgia/pathology , Neurons/pathology , Thalamus/pathology , Toll-Like Receptor 4/genetics
9.
Nat Commun ; 11(1): 3879, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32747673

ABSTRACT

The discovery of 2-dimensional (2D) materials, such as CrI3, that retain magnetic ordering at monolayer thickness has resulted in a surge of both pure and applied research in 2D magnetism. Here, we report a magneto-Raman spectroscopy study on multilayered CrI3, focusing on two additional features in the spectra that appear below the magnetic ordering temperature and were previously assigned to high frequency magnons. Instead, we conclude these modes are actually zone-folded phonons. We observe a striking evolution of the Raman spectra with increasing magnetic field applied perpendicular to the atomic layers in which clear, sudden changes in intensities of the modes are attributed to the interlayer ordering changing from antiferromagnetic to ferromagnetic at a critical magnetic field. Our work highlights the sensitivity of the Raman modes to weak interlayer spin ordering in CrI3.

10.
Neurotherapeutics ; 16(4): 1320-1334, 2019 10.
Article in English | MEDLINE | ID: mdl-31187475

ABSTRACT

Phosphoinositide 3-kinase γ (PI3Kγ) expressed in immune cells is linked to neuroinflammation in several neurological diseases. However, the expression and role of PI3Kγ in preclinical traumatic brain injury (TBI) have not been investigated. In WT mice, we found that TBI induced rapid and extensive expression of PI3Kγ in neurons within the perilesional cortex and the ipsilateral hippocampal subfields (CA1, CA3), which peaked between 1 and 3 days and declined significantly 7 days after TBI. Intriguingly, the induction of neuronal PI3Kγ in these subregions of the brain spatiotemporally coincided with both the TBI-induced activation of the neuronal ER stress pathway (p-eIF2α, ATF4, and CHOP) and neuronal cell death (marked by TUNEL-positive neurons) 3 days after TBI. Further, we show that the absence of PI3Kγ in knockout mice profoundly reduced the TBI-induced activation of the ER stress pathway and neuronal cell death. White matter disruption is a better predictor of long-term clinical outcomes than focal lesion size. We show that PI3Kγ deficiency not only reduced brain tissue loss but also alleviated white matter injury (determined by axonal injury and demyelination) up to 28 days after TBI. Importantly, PI3Kγ-knockout mice exhibited greater functional recovery including forepaw use, sensorimotor balance and coordination, and spatial learning and memory up to 28 days after TBI. These results unveil a previously unappreciated role for neuronal PI3Kγ in the regulation of ER stress associated with neuronal cell death, white matter damage, and long-term functional impairment after TBI.


Subject(s)
Brain Injuries, Traumatic/metabolism , Brain/metabolism , Class Ib Phosphatidylinositol 3-Kinase/biosynthesis , Endoplasmic Reticulum Stress/physiology , Memory Disorders/metabolism , Neurons/metabolism , Animals , Brain/pathology , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/psychology , Enzyme Induction/physiology , Male , Memory Disorders/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/pathology , Time Factors
11.
Immunol Lett ; 198: 66-73, 2018 06.
Article in English | MEDLINE | ID: mdl-29679602

ABSTRACT

Goat myosin light chain 6 (gMYL6) is a constituent of certain extracted immunization-induced goat anti-cancer bioactive peptides (ACBPs). However, little is known about its activity onto NK cells which are the basic cellular attackers in cancer immunotherapy for patients with malignancies. Because of the complicated extraction process and low yield of gMYL6 out of the goat ACBPs' mixture, the Nano-flow liquid chromatography and C-terminal polycationic tag expression strategy were used to identify and enrich the peptide to investigate its bioactivity against cancers/tumors. The solubility-enhanced gMYL6 fused with a hexa-lysine tag showed a capacity of promoting the NK cells' cytotoxicity, making it a novel promising heterogeneous peptide cytokine against cancers.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cytotoxicity, Immunologic/drug effects , Killer Cells, Natural/immunology , Lysine/chemistry , Myosin Light Chains/chemistry , Myosin Light Chains/pharmacology , Amino Acid Sequence , Animals , Antineoplastic Agents/isolation & purification , Cloning, Molecular , Gene Expression , Goats , Humans , K562 Cells , Killer Cells, Natural/drug effects , Myosin Light Chains/genetics , Myosin Light Chains/isolation & purification , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , Solubility
12.
Expert Opin Drug Deliv ; 15(2): 173-184, 2018 02.
Article in English | MEDLINE | ID: mdl-28944694

ABSTRACT

INTRODUCTION: Thrombolysis with intravenous tissue plasminogen activator (tPA) is the only FDA approved treatment for patients with acute ischemic stroke, but its use is limited by narrow therapeutic window, selective efficacy, and hemorrhagic complication. In the past two decades, extensive efforts have been undertaken to extend its therapeutic time window and explore alternative thrombolytic agents, but both show little progress. Nanotechnology has emerged as a promising strategy to improve the efficacy and safety of tPA. AREAS COVERED: We reviewed the biology, thrombolytic mechanism, and pleiotropic functions of tPA in the brain and discussed current applications of various nanocarriers intended for the delivery of tPA for treatment of ischemic stroke. Current challenges and potential further directions of t-PA-based nanothrombolysis in stroke therapy are also discussed. EXPERT OPINION: Using nanocarriers to deliver tPA offers many advantages to enhance the efficacy and safety of tPA therapy. Further research is needed to characterize the physicochemical characteristics and in vivo behavior of tPA-loaded nanocarriers. Combination of tPA based nanothrombolysis and neuroprotection represents a promising treatment strategy for acute ischemic stroke. Theranostic nanocarriers co-delivered with tPA and imaging agents are also promising for future stroke management.


Subject(s)
Brain Ischemia/drug therapy , Fibrinolytic Agents/therapeutic use , Stroke/drug therapy , Thrombolytic Therapy , Tissue Plasminogen Activator/therapeutic use , Administration, Intravenous , Brain Ischemia/physiopathology , Drug Carriers , Humans , Male , Stroke/physiopathology
13.
Oncotarget ; 8(16): 27189-27198, 2017 Apr 18.
Article in English | MEDLINE | ID: mdl-28423711

ABSTRACT

Goat peroxiredoxin-5 (gPRDX5) was verified as a good anti-cancer bioactive peptide (ACBP) against different tumor cell lines. Considering the immunogenicity between species for further therapeutic application, it is necessary to similarly investigate the antitumor activity of human peroxiredoxin-5 (hPRDX5) with 89% similarity in sequence to gPRDX5. In order to evaluate its antitumor activity, the potential anti-neoplastic effect of hPRDX5 on a mouse model was observed directly. The results of its in vivo antitumor activity suggested that hPRDX5 could resist immunosuppression by promoting lymphocyte proliferation and up-regulating the levels of serum cytokines. Meanwhile, PD-L1 was speculated as one of the targets of hPRDX5 to inhibit tumor by enhancing the immune activity according to a preliminary molecular docking study on the interactions between hPRDX5 and PD-L1. The modeling provides a basis for structural modification on hPRDX5/PD-L1 for further biological and biochemical study on the pathway blocking mechanism of hPRDX5. In this work, the results demonstrate that hPRDX5 displays efficient antitumor and immunoregulatory properties in the colon cancer C26/BALB/c and melanoma B16/C57Bl/6 mice tumor models, and suggest the potential of developing peptides from hPRDX5 as low molecular weight drug candidates for corresponding cancer immunotherapy.


Subject(s)
Antineoplastic Agents/chemistry , Models, Molecular , Peroxiredoxins/chemistry , Animals , Antineoplastic Agents/pharmacology , B7-H1 Antigen/chemistry , B7-H1 Antigen/metabolism , Humans , Immunomodulation/drug effects , Lymphocyte Activation/drug effects , Melanoma, Experimental , Mice , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptides/chemistry , Peptides/pharmacology , Peroxiredoxins/pharmacology , Protein Binding , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , Structure-Activity Relationship
14.
Electron. j. biotechnol ; 19(3): 43-48, May 2016. ilus
Article in English | LILACS | ID: lil-787006

ABSTRACT

Background: D-Hydroxyphenylglycine is considered to be an important chiral molecular building-block of antibiotic reagents such as pesticides, and β-lactam antibiotics. The process of its production is catalyzed by D-hydantoinase and D-carbamoylase in a two-step enzyme reaction. How to enhance the catalytic potential of the two enzymes is valuable for industrial application. In this investigation, an Escherichia coli strain genetically engineered with D-hydantoinase was immobilized by calcium alginate with certain adjuncts to evaluate the optimal condition for the biosynthesis of D-carbamoyl-p-hydroxyphenylglycine (D-CpHPG), the compound further be converted to D-hydroxyphenylglycine (D-HPG) by carbamoylase. Results: The optimal medium to produce D-CpHPG by whole-cell immobilization was a modified Luria-Bertani (LB) added with 3.0% (W/V) alginate, 1.5% (W/V) diatomite, 0.05% (W/V) CaCl2 and 1.00 mM MnCl2.The optimized diameter of immobilized beads for the whole-cell biosynthesis here was 2.60 mm. The maximized production rates of D-CpHPG were up to 76%, and the immobilized beads could be reused for 12 batches. Conclusions: This investigation not only provides an effective procedure for biological production of D-CpHPG, but gives an insight into the whole-cell immobilization technology.


Subject(s)
Escherichia coli , Amidohydrolases , Glycine/analogs & derivatives , Cells, Immobilized , Glycine/biosynthesis
15.
Sci Rep ; 6: 24467, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27074889

ABSTRACT

An anticancer bioactive peptide (ACBP), goat peroxiredoxin-5 (gPRDX5), was identified from goat-spleen extract after immunizing the goat with gastric cancer-cell lysate. Its amino acid sequence was determined by employing 2D nano-LC-ESI-LTQ-Orbitrap MS/MS combined with Mascot database search in the goat subset of the Uniprot database. The recombinant gPRDX5 protein was acquired by heterogeneous expression in Escherichia coli. Subsequently, the anti-cancer bioactivity of the peptide was measured by several kinds of tumor cells. The results indicated that the gPRDX5 was a good anti-cancer candidate, especially for killing B16 cells. However, the peptide was found to be unstable without modification with pharmaceutical excipients, which would be a hurdle for future medicinal application. In order to overcome this problem and find an effective way to evaluate the gPRDX5, nanoparticle formation, which has been widely used in drug delivery because of its steadiness in application, less side-effects and enhancement of drug accumulation in target issues, was used here to address the issues. In this work, the gPRDX5 was dispersed into nanoparticles before delivered to B16 cells. By the nanotechnological method, the gPRDX5 was stabilized by a fast and accurate procedure, which suggests a promising way for screening the peptide for further possible medicinal applications.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Goats , Peroxiredoxins/chemistry , Peroxiredoxins/isolation & purification , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Humans , Nanoparticles/metabolism , Peroxiredoxins/genetics , Peroxiredoxins/pharmacology , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Sequence Analysis, Protein , Spleen/chemistry , Tandem Mass Spectrometry
16.
Sheng Wu Gong Cheng Xue Bao ; 29(7): 914-26, 2013 Jul.
Article in Chinese | MEDLINE | ID: mdl-24195358

ABSTRACT

Spinosad represents a new class of insecticides produced by Saccharopolyspora spinosa. To understand the transcription of the spinosad biosynthetic gene cluster, two promoter detection plasmids based on different reporter genes were constructed and used to detect 9 promoters in the spinosad biosynthetic gene cluster. In addition, the temporal transcriptional profiles of the corresponding genes controlled by the 9 promoters, together with 4 genes outside of the spinosad cluster but are required for the synthesis of sugars in spinosad, were examined by real-time PCR. The results indicate that the 9 spinosad biosynthetic genes were highly expressed at the stationary phase, which coincides with the accumulation of spinosad in the fermentation broth. Of particular note is that the transcription of the 4 sugar synthetic genes showed higher level at the exponential phase, suggesting the expression of sugar synthetic genes is not correlated with the spinosad synthetic genes. The data suggest that spinosad biosynthesis could be improved by engineering the expression pattern of the sugar synthetic genes that lie outside the spinosad gene cluster.


Subject(s)
Macrolides/metabolism , Multigene Family , Promoter Regions, Genetic , Saccharopolyspora/genetics , Drug Combinations , Insecticides/metabolism , Plasmids , Real-Time Polymerase Chain Reaction , Saccharopolyspora/metabolism
17.
Appl Environ Microbiol ; 79(14): 4484-92, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23686264

ABSTRACT

Well-characterized promoters are essential tools for metabolic engineering and synthetic biology. In Streptomyces coelicolor, the native kasOp is a temporally expressed promoter strictly controlled by two regulators, ScbR and ScbR2. In this work, first, kasOp was engineered to remove a common binding site of ScbR and ScbR2 upstream of its core region, thus generating a stronger promoter, kasOp3. Second, another ScbR binding site internal to the kasOp3 core promoter region was abolished by random mutation and screening of the mutant library to obtain the strongest promoter, kasOp* (where the asterisk is used to distinguish the engineered promoter from the native promoter). The activities of kasOp* were compared with those of two known strong promoters, ermEp* and SF14p, in three Streptomyces species. kasOp* showed the highest activity at the transcription and protein levels in all three hosts. Furthermore, relative to ermEp* and SF14p, kasOp* was shown to confer the highest actinorhodin production level when used to drive the expression of actII-ORF4 in S. coelicolor. Therefore, kasOp* is a simple and well-defined strong promoter useful for gene overexpression in streptomycetes.


Subject(s)
Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Bacterial , Genetic Engineering , Promoter Regions, Genetic , Streptomyces coelicolor/genetics , Bacterial Proteins/metabolism , Base Sequence , Binding Sites , DNA-Binding Proteins/metabolism , Recombination, Genetic , Streptomyces coelicolor/metabolism , Transcription, Genetic
18.
Zhonghua Yi Xue Za Zhi ; 82(9): 640-2, 2002 May 10.
Article in Chinese | MEDLINE | ID: mdl-12133490

ABSTRACT

OBJECTIVE: To evaluate the feasibility and effect of treatment of thyroid adenoma and cystic degeneration of thyroid adenoma by injection of colloid (32)P with ultrasonic guidance. METHODS: Diluted solutions of (32)P, 37 approximately 74 mBq/1.0 approximately 1.5 ml and 18.5 approximately 37 mBq/ml, were injected, with ultrasonic guidance, into the thyroid adenoma in 30 cases and degenerated cyst of thyroid adenoma in 30 cases, all confirmed by ultrasonography, thyroid scanning and pathologic paracentesis. The serum FT3, FT4, TT3, TT4, and TSH, and blood cells were examined before and after the treatment. Part of the patients was followed up for 6 approximately 36 months. RESULTS: The cure rate was 71.05% (27/38) for thyroid adenoma and 86.67% (26/30) for cystic degeneration of thyroid adenoma. The treatment effect was better for cystic degeneration of thyroid adenoma than for thyroid adenoma. The changes of blood cells and serum thyroid hormones were not significant before and after treatment. No obvious side effect was found in all patients. CONCLUSION: Injection of (32)P with ultrasonic guidance is effective in treatment of thyroid adenoma and cystic degeneration of thyroid adenoma. This method is easy, safe and highly practical clinically.


Subject(s)
Thyroid Neoplasms/surgery , Adult , Female , Humans , Male , Middle Aged , Phosphorus Radioisotopes , Thyroid Neoplasms/diagnostic imaging , Treatment Outcome , Ultrasonography, Interventional
SELECTION OF CITATIONS
SEARCH DETAIL
...