Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 23(21): 8396-8401, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34694822

ABSTRACT

A tandem insertion of thiocyanate to enamine was performed for the regioselective synthesis of multisubstituted benzoimidazo[2,1-b]thiazoles. This method was shown to be effective in addressing the issue of isomerization encountered in common strategies. With a change made to the leading group on the aniline fragment of enamine, the reaction achieved different transformations, thus enabling multisubstituted benzo[4,5]imidazo[2,1-b]thiazoles and thiazoles in satisfactory yields.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 246: 119041, 2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33080512

ABSTRACT

Glutathione (GSH) is one of the most essential bio-thiols to maintain the redox balance of organisms which is strongly associated with many physiological processes. Detecting the concentration and mapping the distribution of GSH in the living system is significant to study many related diseases. In this work, we have successfully constructed an ICT-based model to guide the design and synthesis of GSH specific fluorescent probe CF1. A serials spectroscopy test demonstrated that the response of CF1 towards GSH owned large stokes shift (~167 nm) and an excellent linear relationship (0-120 µM, R2 = 0.9961). Furthermore, CF1 was successfully applied to image endogenous GSH in different cell lines with high sensitivity. This work is instructive for the oriented synthesis of ICT-based functional fluorescent probe and the further visualization of intracellular targets in the living system.


Subject(s)
Fluorescent Dyes , Glutathione , Cell Line
3.
Phys Chem Chem Phys ; 18(26): 17414-27, 2016 Jun 29.
Article in English | MEDLINE | ID: mdl-27254650

ABSTRACT

In this article, the reaction mechanisms of H2S + (3)O2 formation by the HO2 + HS reaction without and with catalyst X (X = H2O, (H2O)2 and (H2O)3) have been investigated theoretically at the CCSD(T)/6-311++G(3df,2pd)//B3LYP/6-311+G(2df,2p) level of theory, coupled with rate constant calculations by using conventional transition state theory. Our results show that in the presence of catalyst X (X = H2O, (H2O)2 and (H2O)3) into the channel of H2S + (3)O2 formation, the reactions between the SH radical and HO2(H2O)n (n = 1-3) complexes are more favorable than the corresponding reactions of the HO2 radical with HS(H2O)n (n = 1-3) complexes due to the lower barrier of the former reactions and the higher concentrations of HO2(H2O)n (n = 1-3) complexes. Meanwhile, the catalytic effect of water, water dimers and water trimers is mainly taken from the contribution of a single water vapor molecule, since the total effective rate constant of HO2H2O + HS and H2OHO2 + HS reactions was, respectively, larger by 7-9 and 9-12 orders of magnitude than that of SH + HO2(H2O)2 and SH + HO2(H2O)3 reactions. Besides, the enhancement factor of water vapor is only 0.37% at 240 K, while at high temperatures, such as 425 K, the positive water vapor effect is enhanced up to 38.00%, indicating that at high temperatures the positive water effect is obvious under atmospheric conditions. Overall, these results show how water and water clusters catalyze the gas phase reactions under atmospheric conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...