Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Fish Physiol Biochem ; 50(3): 1225-1236, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38512395

ABSTRACT

Corticotropin-releasing hormone (CRH) is mainly secreted by the hypothalamus to regulate stress when environmental factors change. Gills contact with water directly and may also secrete CRH to maintain local homeostasis. Ocean acidification changes water chemical parameters and is becoming an important environmental stressor for marine fish. The response of brain and gill CRH systems to ocean acidification remains unclear. In this study, marine medaka were exposed to CO2-acidified seawater (440 ppm, 1000 ppm, and 1800 ppm CO2) for 2 h, 4 h, 24 h, and 7 d, respectively. At 2 h and 4 h, the expression of crh mRNA in gills increased with increasing CO2 concentration. Crh protein is expressed mainly in the lamellae cells. crhbp and crhr1 expression also increased significantly. However, at 2 h and 4 h, acidification caused little changes in these genes and Crh protein expression in the brain. At 7 d, Crh-positive cells were detected in the hypothalamus; moreover, Crh protein expression in the whole brain increased. It is suggested that CRH autocrine secretion in gills is responsible for local acid-base regulation rather than systemic mobilization after short-term acidification stress, which may help the rapid regulation of body damage caused by environmental stress.


Subject(s)
Brain , Corticotropin-Releasing Hormone , Gills , Oryzias , Seawater , Animals , Gills/metabolism , Gills/drug effects , Corticotropin-Releasing Hormone/metabolism , Corticotropin-Releasing Hormone/genetics , Seawater/chemistry , Brain/metabolism , Brain/drug effects , Oryzias/metabolism , Hydrogen-Ion Concentration , Carbon Dioxide/toxicity , RNA, Messenger/metabolism , RNA, Messenger/genetics , Fish Proteins/metabolism , Fish Proteins/genetics , Ocean Acidification
2.
Sci Total Environ ; 874: 162444, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36842599

ABSTRACT

Large yellow croaker (Larimichthys crocea) is a coastal-dwelling soniferous, commercially important fish species that is sensitive to sound. An understanding of how ocean acidification might affect its auditory system is therefore important for its long-term viability and management as a fisheries resource. We tested the effects of ocean acidification with four CO2 treatments (440 ppm (control), 1000 ppm, 1800 ppm, and 3000 ppm) on the inner ear system of this species. After exposure to acidified water for 50 d, the impacts on the perimeter and mass of the sagitta, asteriscus, and lapillus otoliths were determined. In the acidified water treatments, the shape of sagittal otoliths became more irregular, and the surface became rougher. Similar sound frequency ranges triggered startle responses of fish in all treatments. In the highest CO2 treatment (3000 ppm CO2), significant asymmetry of the left and right lapillus perimeter and weight was apparent. Moreover, in the higher CO2 treatments (1800 ppm and 3000 ppm CO2), the fish were unable to maintain a balanced dorsal-up posture and tilted to one side. This result suggested that the balance functions of the inner ear might be affected by ocean acidification, which may threaten large yellow croaker individuals and populations. The molecular response to acidification was analyzed by RNA-Seq. The differentially expressed genes (DEGs) between right and left sensory epithelia of the utricle in each CO2 treatment group were identified. In higher CO2 concentration groups, nervous system function and regulation of bone mineralization pathways were enriched with DEGs. The comparative transcriptome analyses provide valuable molecular information about how the inner ear system responds to an acidified environment.


Subject(s)
Carbon Dioxide , Perciformes , Animals , Carbon Dioxide/toxicity , Carbon Dioxide/metabolism , Hydrogen-Ion Concentration , Ocean Acidification , Seawater , Perciformes/metabolism , Fishes/metabolism , Fish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...