Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
1.
J Hazard Mater ; 476: 134894, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38909463

ABSTRACT

Consumed VOCs are the compounds that have reacted to form ozone and secondary organic aerosol (SOA) in the atmosphere. An approach that can apportion the contributions of primary sources and reactions to the consumed VOCs was developed in this study and applied to hourly VOCs data from June to August 2022 measured in Shijiazhuang, China. The results showed that petrochemical industries (36.9 % and 51.7 %) and oxidation formation (20.6 % and 35.6 %) provided the largest contributions to consumed VOCs and OVOCs during the study period, whereas natural gas (5.0 % and 7.6 %) and the mixed source of liquefied petroleum gas and solvent use (3.1 % and 4.2 %) had the relatively low contributions. Compared to the non-O3 pollution (NOP) period, the contributions of oxidation formation, petrochemical industries, and the mixed source of gas evaporation and vehicle emissions to the consumed VOCs during the O3 pollution (OP) period increased by 2.8, 3.8, and 9.3 times, respectively. The differences in contributions of liquified petroleum gas and solvent use, natural gas, and combustion sources to consumed VOCs between OP and NOP periods were relatively small. Transport of petrochemical industries emissions from the southeast to the study site was the primary consumed pathway for VOCs emitted from petrochemical industries.

2.
Sci Total Environ ; 945: 173729, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38839009

ABSTRACT

PM2.5 and O3 are two of the main air pollutants that have adverse impacts on climate and human health. The evolution process of PM2.5 and O3 co-pollution are of concern because of the increased frequency of PM2.5 and O3 co-pollution days. Here, we examined the chemical coupling and revealed the driving factors of the PM2.5 and O3 co-pollution evolution process from cleaning day, PM2.5 pollution day, or O3 pollution day, applied by theoretical analysis and model calculation methods. The results demonstrate that PM2.5 and O3 co-pollution day frequently occurred with high concentrations of gaseous precursors and higher sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR), which we attribute to the enhancement of atmospheric oxidation capacity (AOC). The AOC is positively correlated with O3 and weakly correlated with PM2.5. In addition, we found that the correlation coefficients of PM2.5-NO2 (0.62) were higher than that of PM2.5-SO2 (0.32), highlighting the priority of NOx controlling to mitigate PM2.5 pollution. Overall, our discovery can provide scientific evidence to design feasible solutions for the controlling PM2.5 and O3 co-pollution process.

3.
Sci Total Environ ; : 174176, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925390

ABSTRACT

High aerosol loadings are observed not only in megacities on continents but also in oceanic regions like the Bohai Sea. This work provides a comprehensive analysis of the spatial and temporal variations in Aerosol Optical Depth (AOD) across different ocean regions worldwide over the past four decades, using remote sensing reanalysis data. The mean AOD value across all oceanic grids is approximately 0.112, with higher levels recorded in the Central Atlantic (~0.206), followed by the North Indian Ocean (~0.201), and the Western North Pacific (~0.197). A latitudinal analysis reveals that high AOD values are predominantly found in the Northern Hemisphere's oceanic regions, especially between latitudes 0° and 70° N. Except for the Gulf of California and Hudson Bay, AOD values in the other fourteen surveyed inland seas surpass the mean levels found at similar latitudes in oceanic regions. Among which, the Bohai Sea stands out as the most polluted oceanic region with AOD value of 0.35. Over the last four decades, AOD trends have revealed a significant decrease across about 89.5 % of global oceanic grids, while an increase in AOD is observed in low-latitude oceanic areas (30° S-30° N). Investigation into inland seas shows that nearly two-thirds have experienced a declining AOD trend, while sharply upward trends in AOD are primarily found in Asia. The Bohai Sea shows the largest increase in AOD, with an annual growth rate of 1.4 %. The turning-points of the AOD in each inland sea confirm the success of regional emission control policies initiated on the adjacent continents. To improve air quality in inland seas like the Bohai Sea, adjusting industrial layouts, such as relocating heavy industries from the surrounding coastal cities' proximities to areas near open seas, could significantly benefit public health.

4.
Sci Total Environ ; 934: 172940, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38701921

ABSTRACT

This study aims to identify unique signatures from residential coal combustion in China across various combustion conditions and coal types. Using a Thermal/Spectral Carbon Analyzer with a Photoionization Time-of-Flight Mass Spectrometer (TSCA-PI-TOF-MS), we focus on the optical properties and organic mass spectra of the emissions. Bituminous coal emerged as the primary emitter of total carbon, releasing 729 µg C/mg PM2.5 under smoldering and 894 µg C/mg PM2.5 under flaming. Carbon fractions mainly comprised OC1 and OC2, except for anthracite's dominance of EC1 under smoldering. Pyrolysis carbon absorption shifted from 405, 445 and 532 nm during smoldering to near-infrared bands (635-980 nm) during flaming for both bituminous and anthracite coal. Conversely, clean coal exhibited an inverse trend, attributed to additives enhancing oxygen-containing organic compounds and long-chain hydrocarbons released in charring process. Sample of bituminous coal began charring at OC3 step, while anthracite began earlier at OC2 step, particularly pronounced under flaming. Clean coal displayed unconventional charring at OC1 step under smoldering condition, producing signature compounds like butenal, methylfuran, furanylalcohol, and naphthol. The mass spectra of bituminous coal featured characteristic peaks, including m/z 192 (methylphenanthrene), 206, 220 (alkylated phenanthrenes), and 234 (retene). Anthracite coal showed a potential tracer at m/z 223, shifting from OC1 in smoldering to OC2 in flaming. Clean coal under flaming condition exhibited elevated levels of aromatic compounds, indicating potential toxicity, with peaks at m/z 178 (phenanthrene), 228 (chrysene/benz[a]anthracene), 234 (retene), 242 (methylchrysene), and 252 (benzo[a]pyrene, benzo[k]fluoranthene). Results also showed that the broader mass spectra range in the OC3 and OC4 steps across all coal types suggests that high-temperature pyrolysis promotes diversity. These findings contribute to refined source apportionment of carbon emissions from residential coal combustion and provide the scientific basis for the formulation of air pollution prevention strategies, crucial for coal-dependent regions.

5.
Nat Commun ; 15(1): 4625, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816351

ABSTRACT

Traditional atmospheric chemistry posits that sulfur dioxide (SO2) can be oxidized to sulfate (SO42-) through aqueous-phase reactions in clouds and gas-phase oxidation. Despite adequate knowledge of traditional mechanisms, several studies have highlighted the potential for SO2 oxidation within aerosol water. Given the widespread presence of tropospheric aerosols, SO42- production through aqueous-phase oxidation in aerosol water could have a pervasive global impact. Here, we quantify the potential contributions of aerosol aqueous pathways to global sulfate formation based on the GEOS-Chem simulations and subsequent theoretical calculations. Hydrogen peroxide (H2O2) oxidation significantly influences continental regions both horizontally and vertically. Over the past two decades, shifts in the formation pathways within typical cities reveal an intriguing trend: despite reductions in SO2 emissions, the increased atmospheric oxidation capacities, like rising H2O2 levels, prevent a steady decline in SO42- concentrations. Abating oxidants would facilitate the benefit of SO2 reduction and the positive feedback in sulfate mitigation.

6.
Ecotoxicol Environ Saf ; 278: 116354, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38691882

ABSTRACT

After the resumption of work and production following the COVID-19 pandemic, many cities entered a "transition phase", characterized by the gradual recovery of emission levels from various sources. Although the overall PM2.5 emission trends have recovered, the specific changes in different sources of PM2.5 remain unclear. Here, we investigated the changes in source contributions and the evolution pattern of pollution episodes (PE) in Wuhan during the "transition period" and compared them with the same period during the COVID-19 lockdown. We found that vehicle emissions, industrial processes, and road dust exhibited significant recoveries during the transition period, increasing by 5.4%, 4.8%, and 3.9%, respectively, during the PE. As primary emissions increased, secondary formation slightly declined, but it still played a predominant role (accounting for 39.1∼ 43.0% of secondary nitrate). The reduction in industrial activities was partially offset by residential burning. The evolution characteristics of PE exhibited significant differences between the two periods, with PM2.5 concentration persisting at a high level during the transition period. The differences in the evolution patterns of the two periods were also reflected in their change rates at each stage, which mostly depend on the pre-PE concentration level. The transition period shows a significantly higher value (8.4 µg m-3 h-1) compared with the lockdown period, almost double the amount. In addition to local emissions, regional transport should be a key consideration in pollution mitigation strategies, especially in areas adjacent to Wuhan. Our study quantifies the variations in sources between the two periods, providing valuable insights for optimizing environmental planning to achieve established goals.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Cities , Environmental Monitoring , Particulate Matter , China/epidemiology , COVID-19/epidemiology , Environmental Monitoring/methods , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Particulate Matter/analysis , Humans , Vehicle Emissions/analysis , SARS-CoV-2 , Industry , Pandemics
7.
Sci Total Environ ; 927: 172038, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38552967

ABSTRACT

Heavy metals (HMs) in PM2.5 gain much attention for their toxicity and carcinogenic risk. This study evaluates the health risks of PM2.5-bound HMs, focusing on how meteorological conditions affect these risks against the backdrop of PM2.5 reduction trends in China. By applying a receptor model with a meteorological normalization technique, followed by health risk assessment, this work reveals emission-driven changes in health risk of source-specific HMs in the outskirt of Tianjin during the implementation of China' second Clean Air Action (2018-2020). Sources of PM2.5-bound HMs were identified, with significant contributions from vehicular emissions (on average, 33.4 %), coal combustion (26.3 %), biomass burning (14.1 %), dust (11.7 %), industrial boilers (9.7 %), and shipping emission and sea salt (4.7 %). The source-specific emission-driven health risk can be enlarged or dwarfed by the changing meteorological conditions over time, demonstrating that the actual risks from these source emissions for a given time period may be higher or smaller than those estimated by traditional assessments. Meteorology contributed on average 56.1 % to the interannual changes in source-specific carcinogenic risk of HMs from 2018 to 2019, and 5.6 % from 2019 to 2020. For the source-specific noncarcinogenic risk changes, the contributions were 38.3 % and 46.4 % for the respective periods. Meteorology exerts a more profound impact on daily risk (short-term trends) than on annual risk (long-term trends). Such meteorological impacts differ among emission sources in both sign and magnitude. Reduced health risks of HMs were largely from targeted regulatory measures on sources. Therefore, the meteorological covariates should be considered to better evaluate the health benefits attributable to pollution control measures in health risk assessment frameworks.


Subject(s)
Air Pollutants , Air Pollution , Environmental Monitoring , Metals, Heavy , Particulate Matter , Particulate Matter/analysis , Air Pollutants/analysis , Risk Assessment , Metals, Heavy/analysis , China , Air Pollution/statistics & numerical data , Humans , Environmental Exposure/statistics & numerical data , Vehicle Emissions/analysis
8.
Sci Total Environ ; 927: 172040, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38554962

ABSTRACT

Civil airports are recognized as significant contributors to fine particulate matter, especially ultra-fine particulate matter (UFP). The pollutants from airport activities have a notable adverse impact on global climate, urban air quality, and public health. However, there is a lack of practical observational studies on the characterization of integrated pollutant emissions from large civil airports. This study aims to focus on the combined emission characteristics of particulate number concentration (PNC), size distribution, and components at a large civil airport, especially UFP. The findings reveal that airport activities significantly contribute to elevated PNC levels during aircraft activity in downwind conditions (four times higher than background levels) and upwind conditions (7.5 times higher). UFP dominates the PNC around the airport. The particle size distribution shows two peaks occurring around 10-30 nm and 60-80 nm. Notably, particles within the ranges of 17-29 nm and 57-101 nm account for 65.9 % and 12.0 % of the total PNC respectively. Aircraft landing has the greatest impact on particles sized between 6 and 17 nm while takeoff affects particles sized between 29 and 57 nm resulting in a respective increase in PNC by factors of approximately 3.27 and 35.4-fold increase compared to background levels. Different aircraft types exhibit varying effects on PNC with A320 and A321 showing more pronounced effects during takeoff and landing.The presence of airports leads to roughly five-fold rise in elemental component concentrations with Si being highest followed by OC, Ca, Al, Fe, Ca2+, EC, and Mg2+. The OC/EC ratio under high aircraft activity in downwind conditions falls within range of approximately 2.5-3.5. These characteristic components and ratio can be considered as identifying species for civil airports. PMF model show about 75 % of the particulate emissions at the airport boundary were related to airport activities.

9.
Sci Total Environ ; 926: 171873, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38521275

ABSTRACT

Research on High Spatial-Resolved Source-Specific Exposure and Risk (HSRSSER) was conducted based on multiple-year, multiple-site synchronous measurement of PM2.5-bound (particulate matter with aerodynamic diameter<2.5 µm) toxic components in a Chinese megacity. The developed HSRSSER model combined the Positive Matrix Factorization (PMF) and Land Use Regression (LUR) to predict high spatial-resolved source contributions, and estimated the source-specific exposure and risk by personal activity time- and population-weighting. A total of 287 PM2.5 samples were collected at ten sites in 2018-2020, and toxic species including heavy metals (HMs), polycyclic aromatic hydrocarbons (PAHs) and organophosphate esters (OPEs) were analyzed. The percentage non-cancer risk were in the order of traffic emission (48 %) > industrial emission (22 %) > coal combustion (12 %) > waste incineration (11 %) > resuspend dust (7 %) > OPE-related products (0 %) ≈ secondary particles (0 %). Similar orders were observed in cancer risk. For traffic emission, due to its higher source contributions and large population in central area, non-cancer and cancer risk fraction increased from 23 % to 48 % and 20 % to 46 % after exposure estimation; while for industrial emission, higher source contributions but small population in suburb area decreased the percentage non-cancer and cancer risk from 38 % to 22 % and 39 % to 24 %, respectively.


Subject(s)
Air Pollutants , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Vehicle Emissions/analysis , Environmental Monitoring , Particulate Matter/analysis , Cities , Polycyclic Aromatic Hydrocarbons/analysis , China/epidemiology
10.
Huan Jing Ke Xue ; 45(3): 1328-1336, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38471849

ABSTRACT

The contents of eight carbonaceous subfractions were determined by simultaneously collecting PM2.5 samples from four sites in different functional areas of Tianjin in 2021. The results showed that the organic carbon (OC) concentration was 3.7 µg·m-3 to 4.4 µg·m-3, and the elemental carbon (EC) concentration was 1.6 µg·m-3 to 1.7 µg·m-3, with the highest OC concentration in the central urban area. There was no significant difference in EC concentration. The concentration of PM2.5 showed the distribution characteristics of the surrounding city>central city>peripheral area. The OC/EC minimum ratio method was used to estimate the concentrations of secondary organic carbon (SOC) in PM2.5, and the results showed that the secondary pollution was more prominent in the surrounding city, with SOC accounting for 48.8%. The correlation between carbon subcomponents in each functional area showed the characteristics of the peripheral area>central area>surrounding area, all showing the strongest correlation between EC1 and OC2 and EC1 and OC4. By including the carbon component concentration into the positive definite matrix factorization (PMF) model for source apportionment, the results showed that road dust sources(9.7%-23.5%), coal-combustion sources (10.2%-13.3%), diesel vehicle exhaust (12.6%-20.2%)and gasoline vehicle exhaust (18.9%-38.8%)were the main sources of carbon components in PM2.5 in Tianjin. The pollution sources of carbon components were different in different functional areas, with the central city and peripheral areas mainly affected by gasoline vehicle exhaust; the surrounding city was more prominently affected by the secondary pollution and diesel vehicle exhaust.

11.
Environ Int ; 185: 108551, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38452465

ABSTRACT

Particulate matter (PM) from residential combustion is an existential threat to human health. Emission factors (EFs) of multiple potential toxic components (PTCs) in size-resolved PM and gas from eight residential fuel combustion were measured, and size distribution, gas/particle partitioning and health risks of the PTCs were investigated. Average EFs from clean coal and anthracite coal were PTEs (sum of EFs of 11 Potential Toxic Elements, 6.62 mg/kg fuels) > PAHs (sum of 22 Polycyclic Aromatic Hydrocarbons, 1.12 mg/kg) > OPAHs (sum of 5 Oxygenated Polycyclic Aromatic Hydrocarbons, 0.45 mg/kg) > PAEs (sum of 6 Phthalate Esters, 0.11 mg/kg) > NPAHs (sum of 14 Nitropolycyclic Aromatic Hydrocarbons, 16.84 µg/kg) > OPEs (sum of 7 Organophosphate Esters, 7.57 µg/kg) > PCBs (sum of 6 Polychorinated Biphenyls, 0.07 µg/kg), which were 2-3 and 1-2 orders of magnitude lower than the EFs of PTCs (except PTEs) from bituminous coal and biomass. Most PAHs, OPAHs and NPAHs, which may mainly originate from chemical reactions, showed similar size distributions and averagely 85 % concentrated in PM1. PTEs, PAEs, OPEs and PCBs generated from the release from raw fuels may have a higher proportion, so their size distributions were more complex and varied with combustion temperature, volatility of compounds, binding mode of the raw fuels, and so on. In addition, clean coal and high-quality anthracite coal could reduce the health risks from the potential organic toxic components, but also reveal the stumbling block of PTEs in risk control.


Subject(s)
Air Pollutants , Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Humans , Air Pollutants/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Particulate Matter/analysis , Coal/analysis , China , Environmental Monitoring
12.
Sci Total Environ ; 926: 171583, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38461977

ABSTRACT

Dual isotopes of nitrogen and oxygen of NO3- are crucial tools for quantifying the formation pathways and precursor NOx sources contributing to atmospheric nitrate. However, further research is needed to reduce the uncertainty associated with NOx proportional contributions. The acquisition of nitrogen isotopic composition from NOx emission sources lacks regulation, and its impact on the accuracy of contribution results remains unexplored. This study identifies key influencing factors of source isotopic composition through statistical methods, based on a detailed summary of δ15N-NOx values from various sources. NOx emission sources are classified considering these factors, and representative means, standard deviations, and 95 % confidence intervals are determined using the bootstrap method. During the sampling period in Tianjin in 2022, the proportional nitrate formation pathways varied between sites. For suburban and coastal sites, the ranking was [Formula: see text] (NO2 + OH radical) > [Formula: see text] (N2O5 + H2O) > [Formula: see text] (NO3 + DMS/HC), while the rural site exhibited similar fractional contributions from all three formation pathways. Fossil fuel NOx sources consistently contributed more than non-fossil NOx sources in each season among three sites. The uncertainties in proportional contributions varied among different sources, with coal combustion and biogenic soil emission showing lower uncertainties, suggesting more stable proportional contributions than other sources. The sensitivity analysis clearly identifies that the isotopic composition of 15N-enriched and 15N-reduced sources significantly influences source contribution results, emphasizing the importance of accurately characterizing the localized and time-efficient nitrogen isotopic composition of NOx emission sources. In conclusion, this research sheds light on the importance of addressing uncertainties in NOx proportional contributions and emphasizes the need for further exploration of nitrogen isotopic composition from NOx emission sources for accurate atmospheric nitrate studies.

13.
Sci Total Environ ; 917: 170235, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38244635

ABSTRACT

Ambient particulate matter (PM2.5 and PM10), has been extensively monitored in numerous urban areas across the globe. Over the past decade, there has been a significant improvement in PM2.5 air quality, while improvements in PM10 levels have been comparatively modest, primarily due to the limited reduction in coarse particle (PM2.5-10) pollution. Unlike PM2.5, PM2.5-10 predominantly originates from local emissions and is often characterized by pronounced spatial heterogeneity. In this study, we utilized over one million data points on PM concentrations, collected from >100 monitoring sites within a Chinese megacity, to perform spatial source apportionment of PM2.5-10. Despite the widespread availability of such data, it has rarely been employed for this purpose. We employed an enhanced positive matrix factorization approach, capable of handling large datasets, in conjunction with a Bayesian multivariate receptor model to deduce spatial source impacts. Four primary sources were successfully identified and interpreted, including residential burning, industrial processes, road dust, and meteorology-related sources. This interpretation was supported by a considerable body of prior knowledge concerning emission sources, which is usually unavailable in most cases. The methodology proposed in this study demonstrates significant potential for generalization to other regions, thereby contributing to the development of air quality management strategies.

14.
Environ Int ; 183: 108387, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38141490

ABSTRACT

Air pollution over the oceans has received less attention compared to densely populated urban areas of continents. The Bohai Sea, a semi-enclosed sea in northern China, is surrounded by thirteen industrial cities that have experienced significant improvements in air quality over the past decade. However, the changes in air pollution over the Bohai Sea and its impacts on surrounding cities remain poorly understood. To address this, this study investigated the evolution of air pollution and its chemical composition in the Bohai Sea over four decades, utilizing satellite remote sensing data, reanalysis datasets, emissions inventories, and statistical modeling. Historically, the region has suffered from severe air pollution, resulting from a combination of continental emissions and marine inputs (e.g., sea salt, ports and maritime vessel activities). The aerosol optical depth (AOD) over the sea was higher than the mean levels observed in its surrounding coastal cities. Statistically, 45% of the air masses reaching the Bohai Sea are associated with natural sources (dust- and marine-rich), while the remainder carry anthropogenic pollutants from continental regions. With the exception of Cangzhou city, these coastal cities suffer from air pollutants originating from the Bohai Sea. Cities in the northern region of the sea, spanning from Tianjin to Yingkou, are particularly impacted. The majority of the surrounding cities are affected by a large proportion of anthropogenic aerosol types transported through air masses from the Bohai Sea, including those from biomass burning and industrial activities. These findings emphasize the considerable influence of human-induced sources in the Bohai Sea on neighboring urban areas. Furthermore, being a maritime region, natural sources like sea salt and dust from the sea may also exert a discernible impact on the neighboring environment.


Subject(s)
Air Pollutants , Air Pollution , Humans , Cities , Air Pollutants/analysis , Dust/analysis , Air Pollution/analysis , China , Aerosols/analysis , Environmental Monitoring/methods
15.
Environ Sci Technol ; 58(3): 1589-1600, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38154035

ABSTRACT

Hydroxymethanesulfonate (HMS) has been found to be an abundant organosulfur aerosol compound in the Beijing-Tianjin-Hebei (BTH) region with a measured maximum daily mean concentration of up to 10 µg per cubic meter in winter. However, the production medium of HMS in aerosols is controversial, and it is unknown whether chemical transport models are able to capture the variations of HMS during individual haze events. In this work, we modify the parametrization of HMS chemistry in the nested-grid GEOS-Chem chemical transport model, whose simulations provide a good account of the field measurements during winter haze episodes. We find the contribution of the aqueous aerosol pathway to total HMS is about 36% in winter in Beijing, due primarily to the enhancement effect of the ionic strength on the rate constants of the reaction between dissolved formaldehyde and sulfite. Our simulations suggest that the HMS-to-inorganic sulfate ratio will increase from the baseline of 7% to 13% in the near future, given the ambitious clean air and climate mitigation policies for the BTH region. The more rapid reductions in emissions of SO2 and NOx compared to NH3 alter the atmospheric acidity, which is a critical factor leading to the rising importance of HMS in particulate sulfur species.


Subject(s)
Air Pollutants , Air Pollution , Beijing , Air Pollutants/analysis , Air Pollution/analysis , Particulate Matter/analysis , Environmental Monitoring , China , Aerosols/analysis , Water
16.
J Hazard Mater ; 459: 132291, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37591173

ABSTRACT

Inhalation bioaccessibility and deposition in respiratory tracts of organic components in atmospheric particulate matter (PM) are key factors for accurately estimating health risks and understanding human exposures. This study evaluated the in-vitro inhalation bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) and PAH derivatives, phthalic acid esters (PAEs), polychlorinated biphenyls (PCBs), and organophosphate flame retardants (OPFRs) in size-resolved PM from a Chinese megacity. The bioaccessibility ranged from 0.2% to 77.8% in the heating period (HP), and from 0.7% to 94.2% in the non-heating period (NHP). Result suggests that less hydrophobic organics might be more bioaccessible. Bioaccessibility of medium logKow organics in sizes > 0.65 µm was significantly inhibited by high carbon fractions, indicating the co-effects. Then, this is the first study to explore effects of sources on inhalation bioaccessibility of organics. Coal and biomass combustion in HP and traffic emission in NHP negatively correlated with bioaccessibility. Secondary particles also negatively correlated with bioaccessibility of medium logKow organics. Incremental lifetime cancer risk (ILCR) and non-cancer risk (HQ) for all measured components in PM10 were estimated after considering the bioaccessibility and deposition efficiencies and the HQ and ILCR were within the acceptable range. BaP and DEHP were strong contributors to HQ and ILCR, respectively.


Subject(s)
Air Pollutants , Carbon , Particulate Matter , Biomass , Carbon/analysis , Particulate Matter/analysis , Risk Assessment , China , Air Pollutants/analysis , Cities
17.
J Hazard Mater ; 459: 132138, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37531767

ABSTRACT

Conventional source apportionments of ambient volatile organic compounds (VOCs) have been based on observed and initial concentrations after photochemical correction. However, these results have not been related to ozone (O3) and secondary organic aerosol (SOA) formation. Thus, the apportioned contributions could not effectively support secondary pollution control development. Source apportionment of the VOCs consumed in forming O3 and SOA is needed. A consumed VOC source apportionment approach was developed and applied to hourly speciated VOCs data from June to August 2022 measured in Laoshan, Qingdao. Biogenic emissions (56.3%), vehicle emissions (17.2%), and gasoline evaporation (9.37%) were the main sources of consumed VOCs. High consumed VOCs from biogenic emissions mainly occurred during transport from parks to the southwest and northwest of study site. During the O3 pollution period, biogenic emissions (46.3%), vehicle emissions (24.2%), and gasoline evaporation (14.3%) provided the largest contributions to the consumed VOCs. However, biogenic emissions contribution increased to 57.1% during the non-O3 pollution period, and vehicle emissions and gasoline evaporation decreased to 16.5% and 9.01%, respectively. Biogenic emissions and the mixed source of combustion sources and solvent use contributed the most to O3 and SOA formation potentials during the O3 pollution period, respectively.

18.
Sci Total Environ ; 899: 165679, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37481086

ABSTRACT

Air pollutants represented by fine particulate matter (PM2.5) and the greenhouse effect caused by carbon dioxide (CO2), are both urgent threats to public health. Tackling the synergistic reduction of PM2.5 and CO2 is critical to achieving improvements in clean air worldwide. A persistent issue is the identification of their common sources and integrated impacts under different environmental conditions. In this study, we investigated the characteristics of the pollution types captured by combined analysis through a comprehensive observational dataset for 2017-2020, and applied machine learning algorithms to quantify the effects of drivers on air pollutants and CO2 formation. More importantly, detailed conclusions were drawn for the joint control of PM2.5-CO2 in multiple pollution types by using ensemble traceability technique. We demonstrated that reducing coal combustion emissions was an effective measure to maximize the benefits of PM2.5-CO2 in weather with low CO2 levels and no PM2.5 pollution. Correspondingly, on days with severe PM2.5 episodes, prioritizing control of vehicle emissions can simultaneously mitigate PM2.5 and CO2. Similar conclusions were found at high CO2 levels, accompanied by a more extensive role of vehicle emissions. Furthermore, a comparison of the differences in source impacts between PM2.5-CO2 and individual species suggests that focusing only on the sources that contribute significantly to one species may result in an underestimation or overestimation of PM2.5-CO2 source impacts. One such implication, as evidenced by our findings, is that synergistic controlling common sources of pollutants should be efficient. Thereby, common source management targeting PM2.5-CO2 under multiple pollution types is a more workable solution to alleviate environmental pollution.

19.
Heliyon ; 9(7): e17442, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37449132

ABSTRACT

Exploring coordinated pathways that can promote not only the sustainable development of the industrial economy but also air quality is of great significance for the prevention and control of air pollution in China. Currently, the joint development pathways of the industrial economy-environment nexus remain unclear and poorly evaluated. In this study, we proposed a comprehensive performance evaluation combining objective and subjective weighting to identify industrial enterprises' economic-environment nexus benefits. It would be one of the most important steps to explore the coordinated pathways. Based on data envelopment analysis (DEA), the proposed method integrated with the index integration was used to evaluate the comprehensive performances of 41 industrial sectors in China's 13th five-year plan (2016-2020). Evaluation results showed that the comprehensive performances of the economy-environment nexus of the industrial sectors varied significantly, with the five-year average comprehensive technical efficiency (TE) of 0.11-1. Overall, the best two performances were realized by the industries of equipment manufacturing and living consumption, whereas the worst one belonged to the industry of bulk raw materials, with average comprehensive TE values of 0.50, 0.43, and 0.19, respectively. The results of the quantitative evaluation were consistent with those of the qualitative analysis in terms of the developmental status of the industrial sectors. According to the analyses of pure technical efficiency and scale effect, the proposed method identified the industrial sectors with the highest developmental value and with the highest need to control air pollution. Compared with those of the original DEA model, the results of the proposed method showed pronounced differences in terms of the performances of industrial sectors with high energy consumption and high particulate matter (PM) emissions and with low energy consumption and low PM emissions. The proposed evaluation method combining the weighting was suitable for identifying the comprehensive performance of the industrial economy-environment nexus and provides the basis for the prevention and control of air pollution.

20.
Sci Total Environ ; 896: 165182, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37385502

ABSTRACT

Ambient volatile organic compounds (VOCs) concentrations are affected by emissions, dispersion, and chemistry. This work developed an initial concentration-dispersion normalized PMF (ICDN-PMF) to reflect the changes in source emissions. The effects of photochemical losses for VOC species were corrected by estimating the initial data, and then applying dispersion normalization to reduce the impacts of atmospheric dispersion. Hourly speciated VOC data measured in Qingdao from March to May 2020 were utilized to test the method and had assessed its effectiveness. Underestimated solvent use and biogenic emissions contributions due to photochemical losses during the O3 pollution (OP) period reached 4.4 and 3.8 times the non-O3 pollution (NOP) period values, respectively. Increased solvent use contribution due to air dispersion during the OP period was 4.6 times the change in the NOP period. The influence of chemical conversion and air dispersion on the gasoline and diesel vehicle emissions was not apparent during either period. The ICDN-PMF results suggested that biogenic emissions (23.1 %), solvent use (23.0 %), motor-vehicle emissions (17.1 %), and natural gas and diesel evaporation (15.8 %) contributed most to ambient VOCs during the OP period. Biogenic emissions and solvent use contributions during the OP period increased by 187 % and 135 % compared with the NOP period, respectively, whereas that of liquefied petroleum gas substantially decreased during the OP period. Controlling solvent use and motor-vehicles could be effective in controlling VOCs in the OP period.

SELECTION OF CITATIONS
SEARCH DETAIL
...