Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1358309, 2024.
Article in English | MEDLINE | ID: mdl-38711611

ABSTRACT

The study explores the impact of mine grassland restoration on plant communities and soil properties in alpine grasslands, a subject of significant interest due to the observed relationship between grassland changes, plant communities, and soil properties. While prior research has mainly focused on the consequences of grassland degradation on plant diversity and soil characteristics, the specific effects of varying restoration degrees in alpine mining grasslands at the regional scale remain poorly understood. To address this knowledge gap, we established 15 sampling plots (0.5m×0.5m) across five different restoration degrees within alpine mining grasslands in the Qilian Mountains, China. Our objective was to assess the variations in plant diversity and soil properties along these restoration gradients. We conducted comprehensive analyses, encompassing soil properties [soil water content (SWC), available nitrogen (AN), total phosphorus (TP), nitrate nitrogen (NO3-N), ammonium nitrogen (NH4-N), total nitrogen (TN), available phosphorus (AP), soil organic carbon (SOC), nitrate nitrogen, soil pH, and electrical conductivity (EC)], plant characteristics (height, density, frequency, coverage, and aboveground biomass), and plant diversity indices (Simpson, Shannon-Wiener, Margalef, Dominance, and Evenness indexes). Our findings included the identification and collection of 18 plant species from 11 families and 16 genera across the five restoration degrees: Very Low Restoration Degree (VLRD), Low Restoration Degree (LRD), Moderate Restoration Degree (MRD), High Restoration Degree (HRD), and Natural Grassland (NGL). Notably, species like Carex duriuscula, Cyperus rotundus, and Polygonum viviparum showed signs of recovery. Principal component analysis and Pearson correlation analysis revealed that soil pH, SWC, SOC, NO3-N, and AN were the primary environmental factors influencing plant communities. Specifically, soil pH and EC decreased as restoration levels increased, while SWC, AN, TP, NH4-N, TN, AP, SOC, and NO3-N exhibited a gradual increase with greater restoration efforts. Furthermore, the HRD plant community demonstrated similarities to the NGL, indicating the most effective natural recovery. In conclusion, our study provides valuable insights into the responses of plant community characteristics, plant diversity, and soil properties across varying restoration degrees to environmental factors. It also elucidates the characteristics of plant communities along recovery gradients in alpine grasslands.

2.
ACS Biomater Sci Eng ; 10(5): 3108-3119, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38659287

ABSTRACT

Persistent foot odor and itchiness are common symptoms of tinea pedis, significantly disrupting the daily life of those affected. The cuticular barrier at the site of the tinea pedis is thickened, which impedes the effective penetration of antifungal agents. Additionally, fungi can migrate from the skin surface to deeper tissues, posing challenges in the current clinical treatment for tinea pedis. To effectively treat tinea pedis, we developed a platform of bilayer gelatin methacrylate (GelMA) microneedles (MNs) loaded with salicylic acid (SA) and FK13-a1 (SA/FK13-a1@GelMA MNs). SA/FK13-a1@GelMA MNs exhibit pH- and matrix metalloproteinase (MMP)-responsive properties for efficient drug delivery. The MNs are designed to deliver salicylic acid (SA) deep into the stratum corneum, softening the cuticle and creating microchannels. This process enables the antibacterial peptide FK13-a1 to penetrate through the stratum corneum barrier, facilitating intradermal diffusion and exerting antifungal and anti-inflammatory effects. In severe cases of tinea pedis, heightened local pH levels and MMP activity further accelerate drug release. Our research demonstrates that SA/FK13-a1@GelMA MNs are highly effective against Trichophyton mentagrophytes, Trichophyton rubrum, and Candida albicans. They also reduced stratum corneum thickness, fungal burden, and inflammation in a guinea pig model of tinea pedis induced by T. mentagrophytes. Furthermore, it was discovered that SA/FK13-a1@GelMA MNs exhibit excellent biocompatibility. These findings suggest that SA/FK13-a1@GelMA MNs have significant potential for the clinical treatment of tinea pedis as well as other fungal skin disorders.


Subject(s)
Antifungal Agents , Needles , Tinea Pedis , Tinea Pedis/drug therapy , Animals , Hydrogen-Ion Concentration , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Antifungal Agents/administration & dosage , Matrix Metalloproteinases/metabolism , Humans , Drug Delivery Systems/instrumentation , Drug Delivery Systems/methods , Guinea Pigs , Gelatin/chemistry , Methacrylates/chemistry
3.
Sci Total Environ ; 912: 169528, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38142005

ABSTRACT

Soil erosion leads to soil degradation and depletion of land resources, posing a significant threat to industrial production and ecological sustainability. In high-altitude regions, rill erosion is the main form of soil erosion in mining areas, however, our understanding of morphology and developmental characteristics of rills and the mechanisms influencing them remains limited. In this study, data were collected from 96 rill plots across two gold mines in the eastern Tibetan Plateau according to vegetation restoration modes (natural restoration (CK) and planted with Elymus dahuricus (ED), Medicago sativa (MS), and multi-plant mixed (Avena fatua L. + Elymus dahuricus + Medicago sativa + Oxytropis coerulea, MM)) and restoration periods (1 year, 3 years, 4 years, and 6 years). We investigated the variations of 7 indicators that can reveal rill morphological and developmental characteristics across different restoration modes and restoration periods, and utilized a partial least squares structural equation model (PLS-SEM) to analyze the effects of 15 indicators from topography, soil, and vegetation on rill erosion modulus (REM). The results indicated that artificial vegetation restoration effectively restrained rill development, notably by decreasing the frequency of wider (>15 cm) and deeper (>10 cm) rills when compared to CK plots. Planting MM and ED exhibited greater efficacy in controlling rill erosion than planting MS. However, the effectiveness of planting ED in controlling rill erosion gradually weakened with time, while MM consistently maintained a strong inhibitory effect. Topographic features, soil texture, and vegetation significantly influenced the REM through direct or indirect effects. Plant root functional traits were the main driving factors in reducing REM, affecting not only REM directly but also influencing vegetation-induced soil properties to indirectly effect REM.


Subject(s)
Altitude , Elymus , Plants , Soil , Mining , China
4.
Environ Technol ; : 1-9, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35796065

ABSTRACT

Wind erosion is one of the reasons for the formation of desertification in arid and semiarid areas. Many measures are used to achieve sustainable land management. Microcoleus vaginatus can influence and offer limited protection to soils from wind erosion through its impact on controlling threshold friction velocity. Therefore, the study aims to explore the effectiveness and anti-wind erosion ability of Microcoleus vaginatus with the aid of attapulgite-based nanocomposite and to find a method that can act as bioindicators for investigating wind erosion in arid and semiarid areas in the future, for offering a method to prevent desertification and provide a valuable measure for the sustainable development of the environment. In this study, the effects of wind stress on reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione (GSH) and the surface character of the soil were analysed. The results showed that increased ROS and MDA, decreased GSH, changed SOD, POD and CAT, and enhanced soil structure in Microcoleus vaginatus with the aid of attapulgite-based nanocomposites were influenced by 3 and 5 m·s-1 wind erosion. Further analysis demonstrated that increased SOD, POD and CAT and decreased GSH eliminated ROS and MDA through the antioxidant defense response of Microcoleus vaginatus with the aid of attapulgite-based nanocomposites. The results revealed that Microcoleus vaginatus with the aid of attapulgite-based nanocomposite had an important physiological adaptation for the elimination of ROS and lipid peroxidation induced by wind stress and could play a role in alleviating wind erosion.

SELECTION OF CITATIONS
SEARCH DETAIL
...