Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Foods ; 12(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37444238

ABSTRACT

Dipeptidyl peptidase-IV (DPP-IV) is a key target for the treatment of type 2 diabetes mellitus. It is possible that peptides that precisely regulate DPP-IV could be released from coix seed prolamins (CSP), but whether this happens has not yet been investigated. We performed the in silico digestion of CSP and predicted the bioactivity, absorption, transport, toxicity, and allergenicity of the resulting peptides. The simulation predicted that 47 non-toxic bioactive peptides would be released. After screening these, we found that 64.58% of them could possess DPP-IV inhibitory activity. The effect of thermal processing on the amino acid composition and structural properties of CSP was determined, and the DPP-IV inhibitory activity of its digestion-derived peptides was also assessed. The results showed that processing could change the flavour of coix seed and the supply of amino acids. After processing, the spatial conformation of CSP changed from ordered to disordered, and the peptide content and the DPP-IV inhibitory activity of its digestion products significantly increased by 19.89-30.91% and 36.84-42.02%, respectively. These results support the hypothesis that processing can change the protein structure and increase the probability that bioactive peptides will be released. They also have important implications for the development of bioactive peptides and the intensive processing of coix seeds.

2.
Drug Chem Toxicol ; 45(1): 33-43, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35100937

ABSTRACT

1,4-naphthoquinone and its derivatives have attracted widespread attention due to their multiple biological activities, such as induction of cancer cell apoptosis; however, most of these compounds have high cytotoxicity. In this study, in order to reduce their toxicity and increase their potential anti-tumor effects, we synthesized a novel 1,4-naphthoquinone derivative named 2-(naphthalene-2-thio)-5,8-dimethoxy-1,4-naphthoquinone (NTDMNQ), and investigated its apoptotic effects and underlying mechanism. Our results showed that NTDMNQ inhibited the viability of HepG2, Hep3B, and Huh7 human hepatocellular carcinoma (HCC) cells. It also increased the accumulation of cells in the G0/G1 phase of the cell cycle by increasing the expression levels of p-p53, p21 and p27, while decreasing the levels of Cyclin D1, Cyclin E, Cyclin-dependent kinase 2 (CDK2), CDK4, and CDK6. Inhibition of reactive oxygen species (ROS) by the ROS scavenger N-acetyl-L-cysteine (NAC) decreased apoptosis in NTDMNQ-treated cells. Western blot analysis showed that NTDMNQ increased the phosphorylation of p38 and c-Jun N-terminal kinase (JNK), and decreased the phosphorylation of extracellular signal-regulated kinase (ERK), AKT, and signal transducer and activator of transcription-3 (STAT3); these effects were blocked by NAC. Both the JNK inhibitor (SP600125) and p38 inhibitor (SB203580) reversed the phosphorylation of STAT3, and the ERK inhibitor (FR180204) and AKT inhibitor (LY294002) reduced the expression of STAT3. Taken together, these findings suggest that NTDMNQ induces apoptosis via ROS-mediated MAPK, AKT and STAT3 signaling pathways in HepG2 cells, and may be a potent anticancer agent.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Apoptosis , Carcinoma, Hepatocellular/drug therapy , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Naphthalenes , Naphthoquinones , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , STAT3 Transcription Factor , Signal Transduction
3.
Food Funct ; 13(1): 186-197, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34877954

ABSTRACT

This study investigated the effects of mung bean protein (MPI) and a MPI-polyphenol complex on oxidative stress levels and intestinal microflora in a D-galactose-induced aging mouse model. MPI and MPI-polyphenol complex intervention significantly increased activity of superoxide dismutase (SOD) and catalase and other antioxidant enzymes, improved the abundance and diversity of intestinal flora, and decreased the Firmicutes to Bacteroidetes ratio. Among them, the complex was more conducive to the improvement of the activity of antioxidant enzymes. The addition of MPI and the MPI-polyphenol complex can help the proliferation of Bacteroidetes, Bifidobacterium and Roseburia in the intestinal tract of aging mice, and inhibit the growth of Firmicutes and Ruminococcus, and the proliferation effect of the complex on Bifidobacterium was better than that of MPI. MPI significantly upregulated five pathways related to lipid and energy metabolism. Roseburia and Muribaculaceae were negatively correlated with malondialdehyde levels and positively correlated with SOD and other antioxidant enzyme indices. Our findings showed that MPI and MPI-polyphenol complexes can delay aging in mice by reducing oxidative damage and regulating intestinal flora. We also found a strong relationship between the abundance of intestinal flora and the levels of oxidative stress-related enzymes. This study provides theoretical support for the health and anti-aging benefits of mung bean food products.


Subject(s)
Antioxidants/pharmacology , Gastrointestinal Microbiome/drug effects , Plant Proteins/pharmacology , Polyphenols/pharmacology , Vigna/chemistry , Aging/drug effects , Animals , Male , Mice , Oxidative Stress/drug effects , Oxidoreductases/metabolism
4.
Naunyn Schmiedebergs Arch Pharmacol ; 393(10): 1987-1999, 2020 10.
Article in English | MEDLINE | ID: mdl-31956937

ABSTRACT

Liquiritin (LIQ), a major constituent of Glycyrrhiza Radix, exhibits various pharmacological activities. In this study, to explore the potential anti-cancer effects and its underlying molecular mechanisms of LIQ in hepatocellular carcinoma (HCC) cells. LIQ significantly decreased viability and induced apoptosis in HepG2 cells by decreasing mitochondrial membrane potential and regulating Bcl-2 family proteins, cytochrome c, cle-caspase-3, and cle-PARP. The cell cycle analysis and western blot analysis revealed that LIQ induced G2/M phase arrest through increased expression of p21 and decreased levels of p27, cyclin B, and CDK1/2. The flow cytometry and western blot analysis also suggested that LIQ promoted the accumulation of ROS in HepG2 cells and up-regulated the phosphorylation expression levels of p38 kinase, c-Jun N-terminal kinase (JNK), and inhibitor of NF-κB (IκB-α); the phosphorylation levels of extracellular signal-regulated kinase (ERK), protein kinase B (AKT), signal transducer activator of transcription 3 (STAT3), and nuclear factor kappa B (NF-κB) were down-regulated. However, these effects were reversed by N-acetyl-L-cysteine (NAC), MAPK, and AKT inhibitors. The findings demonstrated that LIQ induced cell cycle arrest and apoptosis via the ROS-mediated MAPK/AKT/NF-κB signaling pathway in HepG2 cells, and the LIQ may serve as a potential therapeutic agent for the treatment of human HCC.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cell Proliferation/drug effects , Flavanones/pharmacology , Glucosides/pharmacology , MAP Kinase Signaling System/drug effects , NF-kappa B/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Reactive Oxygen Species/antagonists & inhibitors , Antineoplastic Agents, Phytogenic/therapeutic use , Apoptosis/drug effects , Apoptosis/physiology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Cell Proliferation/physiology , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Flavanones/therapeutic use , Glucosides/therapeutic use , Glycyrrhiza , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , MAP Kinase Signaling System/physiology , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism
5.
Article in English | MEDLINE | ID: mdl-33424997

ABSTRACT

Curcumin (CUR) possesses pronounced anti-inflammatory and antioxidant activities. Generally, the clinical application of CUR is restricted due to its apparent unstability and poor absorption, and the biological activities of CUR may be closely associated with its metabolites. Tetrahydrocurcumin (THC) and octahydrocurcumin (OHC) are two major hydrogenated metabolites of CUR with appreciable biological potentials. Here, we comparatively explored the anti-inflammatory and antioxidant activities of CUR, THC, and OHC in lipopolysaccharide- (LPS-) induced RAW264.7 macrophages. The results revealed that CUR, THC, and OHC dose-dependently inhibited the generation of NO and MCP-1 as well as the gene expression of MCP-1 and iNOS. Additionally, CUR, THC, and OHC significantly inhibited NF-κB activation and p38MAPK and ERK phosphorylation, while substantially upregulated the Nrf2 target gene expression (HO-1, NQO-1, GCLC, and GCLM). Nevertheless, zinc protoporphyrin (ZnPP), a typical HO-1 inhibitor, significantly reversed the alleviative effect of CUR, THC, and OHC on LPS-stimulated ROS generation. These results demonstrated that CUR, THC, and OHC exerted beneficial effect on LPS-stimulated inflammatory and oxidative responses, at least partially, through inhibiting the NF-κB and MAPKs pathways and activating Nrf2-regulated antioxidant gene expression. Particularly, THC and OHC might exert superior antioxidant and anti-inflammatory activities to CUR in LPS-stimulated RAW264.7 cells, which can be further explored to be a promising novel effective agent for inflammatory treatment.

6.
Mol Med Rep ; 20(5): 4576-4586, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31702038

ABSTRACT

Quinalizarin has been demonstrated to exhibit potent antitumor activities in lung cancer and gastric cancer cells, but currently, little is known regarding its anticancer mechanisms in human breast cancer cells. The aim of the present study was to investigate the apoptotic effects of quinalizarin in MCF­7 cells and to analyze its molecular mechanisms. The MTT assay was used to evaluate the viability of human breast cancer cells that had been treated with quinalizarin and 5­fluorouracil. Flow cytometric analyses and western blotting were used to investigate the effects of quinalizarin on apoptosis and cycle arrest in MCF­7 cells with focus on reactive oxygen species (ROS) production. The results demonstrated that quinalizarin exhibited significant cytotoxic effects on human breast cancer cells in a dose­dependent manner. Accompanying ROS, quinalizarin induced MCF­7 cell mitochondrial­associated apoptosis by regulating mitochondrial­associated apoptosis, and caused cell cycle arrest at the G2/M phase in a time­dependent manner. Furthermore, quinalizarin can activate p38 kinase and JNK, and inhibit the extracellular signal­regulated kinase, signal transducer and activator of transcription 3 (STAT3) and NF­κB signaling pathways. These effects were blocked by mitogen­activated protein kinase (MAPK) inhibitor and N­acetyl­L­cysteine. The results from the present study suggested that quinalizarin induced G2/M phase cell cycle arrest and apoptosis in MCF­7 cells through ROS­mediated MAPK, STAT3 and NF­κB signaling pathways. Thus, quinalizarin may be useful for human breast cancer treatment, as well as the treatment of other cancer types.


Subject(s)
Anthraquinones/pharmacology , Apoptosis/drug effects , Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System/drug effects , NF-kappa B/metabolism , Neoplasm Proteins/metabolism , Reactive Oxygen Species/metabolism , STAT3 Transcription Factor/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Female , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , M Phase Cell Cycle Checkpoints/drug effects , MCF-7 Cells
7.
Drug Dev Res ; 80(8): 1040-1050, 2019 12.
Article in English | MEDLINE | ID: mdl-31432559

ABSTRACT

Quinalizarin, a bioactive and highly selective compound, is known to promote apoptosis in colon and lung cancer cells. However, studies evaluating quinalizarin-induced apoptosis in melanoma cells have not been conducted. In the present study, we investigated the underlying mechanisms of antimelanoma activity of quinalizarin in human melanoma A375 cells. The MTT assay and Trypan blue staining were used to evaluate the cell viability. The flow cytometry was used to detect cell cycle, apoptosis and reactive oxygen species (ROS). Western blot was used to detect the expression of cell cycle and apoptosis-related proteins, MAPK, and STAT3. The results revealed a significant dose and time dependent effect of quinalizarin on inhibiting proliferation in three kinds of human melanoma cells, and had no significant toxic effects on normal cells. Moreover, quinalizarin triggered G2/M phase cell arrest by modulating the protein expression levels of CDK 1/2, cyclin A, cyclin B, p21 and p27, and induced apoptosis by down-regulating the antiapoptotic protein Bcl-2 and upregulating the proapoptotic protein BAD, leading to the activation of caspase-3 and PARP in the caspase cascade in A375 cells. Quinalizarin treatment led to apoptosis of A375 cells via activation of MAPK and inhibition of STAT3 signaling pathways. In addition, quinalizarin increased the level of ROS, but ROS scavenger NAC inhibited quinalizarin-induced apoptosis by regulating MAPK and STAT3 signaling pathways. In summary, quinalizarin induces cell cycle arrest and apoptosis via ROS-mediated MAPK and STAT3 signaling pathways in human melanoma A375 cells, and quinalizarin may be used as a novel and effective antimelanoma therapeutic.


Subject(s)
Anthraquinones/pharmacology , Melanoma/metabolism , Reactive Oxygen Species/metabolism , Apoptosis Regulatory Proteins/metabolism , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Melanoma/drug therapy , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Signal Transduction/drug effects
8.
Mol Med Rep ; 20(3): 2571-2582, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31322207

ABSTRACT

1,4­Naphthoquinone derivatives have superior anticancer effects, but their use has been severely limited in clinical practice due to adverse side effects. To reduce the side effects and extend the anticancer effects of 1,4­naphthoquinone derivatives, 2­(butane­1­sulfinyl)­1,4­naphthoquinone (BQ) and 2­(octane­1­sulfinyl)­1,4­naphthoquinone (OQ) were synthesized, and their anticancer activities were investigated. The anti­proliferation effects, determined by MTT assays, showed that BQ and OQ significantly inhibited the viability of gastric cancer cells and had no significant cytotoxic effect on normal cell lines. The apoptotic effect was determined by flow cytometry, and the results showed that BQ and OQ induced cell apoptosis by regulating the mitochondrial pathway and cell cycle arrest at the G2/M phase via inhibition of the Akt signaling pathway in AGS cells. Furthermore, BQ and OQ significantly increased the levels of reactive oxygen species (ROS) and this effect was blocked by the ROS scavenger NAC in AGS cells. BQ and OQ induced apoptosis by upregulating the protein expression of p38 and JNK and downregulating the levels of ERK and STAT3. Furthermore, expression levels of these proteins were also blocked after NAC treatment. These results demonstrated that BQ and OQ induced apoptosis and cell cycle arrest at the G2/M phase in AGS cells by stimulating ROS generation, which caused subsequent activation of MAPK, Akt and STAT3 signaling pathways. Thus, BQ and OQ may serve as potential therapeutic agents for the treatment of human gastric cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Naphthoquinones/pharmacology , Signal Transduction/drug effects , Stomach Neoplasms/drug therapy , Antineoplastic Agents/chemistry , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Humans , MAP Kinase Signaling System/drug effects , Naphthoquinones/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , STAT3 Transcription Factor/metabolism , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology
9.
Chem Biol Interact ; 304: 148-157, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30871965

ABSTRACT

1,4-Naphthoquinone compounds are a class of organic compounds derived from naphthalene. They exert a wide variety of biological effects, but when used as anticancer drugs, have varying levels of side effects. In the present study, in order to reduce toxicity and improve the antitumor activity, we synthesized two novel 1,4-naphthoquinone derivatives, 2-(butane-1-sulfinyl)-1,4-naphthoquinone (BSQ) and 2-(octane-1-sulfinyl)-1,4-naphthoquinone (OSQ). We investigated the antitumor effects of BSQ and OSQ in human lung cancer cells and the underlying molecular mechanisms of these effects, focusing on the relationship between these compounds and reactive oxygen species (ROS) production. MTT assay and trypan blue exclusion assay results showed that BSQ and OSQ had significant cytotoxic effects in human lung cancer cells. Flow cytometry results indicated that the number of apoptotic cells and the intracellular ROS levels significantly increased after treatment with BSQ and OSQ. However, cell apoptosis was inhibited by pretreatment with the ROS scavenger N-acetyl-l-cysteine (NAC). Western blotting results showed that BSQ and OSQ increased the expression levels of p-p38 kinase and p-c-Jun N-terminal kinase (p-JNK), and decreased the expression levels of p-extracellular signal-regulated kinase (p-ERK), p-protein kinase B (p-Akt), and p-signal transducer and activator of transcription-3 (p-STAT3). These phenomena were blocked by mitogen-activated protein kinase (MAPK) inhibitors, Akt inhibitors and NAC. In conclusion, BSQ and OSQ induce human lung cancer A549 cell apoptosis by ROS-mediated MAPKs, Akt, and STAT3 signaling pathways. Therefore, BSQ and OSQ may be therapeutic potential agents for the treatment of human lung cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Mitogen-Activated Protein Kinases/metabolism , Naphthalenes/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , STAT3 Transcription Factor/metabolism , A549 Cells , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Naphthalenes/pharmacology , Signal Transduction/drug effects , Structure-Activity Relationship , Tumor Cells, Cultured
10.
Bioorg Med Chem ; 27(8): 1577-1587, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30846406

ABSTRACT

The natural compound 1,4-naphthoquinone has potent anti-tumor activity. However, the clinical application of 1,4-naphthoquinone and its derivatives has been limited by their side effects. In this study, we attempted to reduce the toxicity of 1,4-naphthoquinone by synthesizing two derivatives: 2,3-dihydro-2,3-epoxy-2-propylsulfonyl-5,8-dimethoxy-1,4-naphthoquinone (EPDMNQ) and 2,3-dihydro-2,3-epoxy-2-nonylsulfonyl-5,8-dimethoxy-1,4-naphthoquinone (ENDMNQ). Then we evaluated the cytotoxicity and molecular mechanisms of these compounds in lung cancer cells. EPDMNQ and ENDMNQ significantly inhibited the viabilities of three lung cancer cell lines and induced A549 cell cycle arrest at the G1 phase. In addition, they induced the apoptosis of A549 lung cancer cells by increasing the phosphorylation of p38 and c-Jun N-terminal kinase (p-JNK), and decreasing the phosphorylation of extracellular signal-related kinase (p-ERK), protein kinase B (Akt), and signal transducer and activator of transcription 3 (STAT3). Furthermore, they increased reactive oxygen species (ROS) levels in A549 cells; however, pretreatment with the ROS inhibitor N-acetyl-l-cysteine significantly inhibited EPDMNQ- and ENDMNQ-mediated apoptosis and reversed apoptotic proteins expression. In conclusion, EPDMNQ and ENDMNQ induced G1 phase cell cycle arrest and apoptosis in A549 cells via the ROS-mediated activation of mitogen activated protein kinase (MAPK), Akt and STAT3 signaling pathways.


Subject(s)
Apoptosis , Drug Design , Naphthoquinones/chemistry , Reactive Oxygen Species/metabolism , Signal Transduction , Acetylcysteine/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mitogen-Activated Protein Kinases/metabolism , Naphthoquinones/pharmacology , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects
11.
Drug Dev Res ; 80(5): 573-584, 2019 08.
Article in English | MEDLINE | ID: mdl-30916421

ABSTRACT

Glycitein is an isoflavone that reportedly inhibits the proliferation of human breast cancer and prostate cancer cells. However, its anti-cancer molecular mechanisms in human gastric cancer remain to be defined. This study evaluated the antitumor effects of glycitein on human gastric cancer cells and investigated the underlying mechanisms. We used MTT assay, flow cytometry and western blotting to investigate its molecular mechanisms with focus on reactive oxygen species (ROS) production. Our results showed that glycitein had significant cytotoxic effects on human gastric cancer cells. Glycitein markedly decreased mitochondrial transmembrane potential (ΔΨm) and increased AGS cells mitochondrial-related apoptosis, and caused G0/G1 cell cycle arrest by regulating cycle-related protein. Mechanistically, accompanying ROS, glycitein can activate mitogen-activated protein kinase (MAPK) and inhibited the signal transducer and activator of transcription 3 (STAT3) and nuclear factor-kappaB (NF-κB) signaling pathways. Furthermore, the MAPK signaling pathway regulated the expression levels of STAT3 and NF-κB upon treatment with MAPK inhibitor and N-acetyl-L-cysteine (NAC). These findings suggested that glycitein induced AGS cell apoptosis and G0/G1 phase cell cycle arrest via ROS-related MAPK/STAT3/NF-κB signaling pathways. Thus, glycitein has the potential to a novel targeted therapeutic agent for human gastric cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Isoflavones/pharmacology , MAP Kinase Signaling System/drug effects , Reactive Oxygen Species/metabolism , Stomach Neoplasms/metabolism , Acetylcysteine/pharmacology , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects , NF-kappa B/metabolism , STAT3 Transcription Factor/metabolism , Stomach Neoplasms/drug therapy
12.
Drug Dev Res ; 80(4): 461-470, 2019 06.
Article in English | MEDLINE | ID: mdl-30698296

ABSTRACT

Isoliquiritigenin (ISL), a natural flavonoid isolated from plant licorice, has various pharmacological properties, including anticancer, anti-inflammatory, and antiviral effects. However, the underlying mechanisms and signaling pathways of ISL in human hepatocellular carcinoma (HCC) cells remain unknown. In this study, we evaluated the effects of ISL on the apoptosis of human HCC cells with a focus on reactive oxygen species (ROS) production. Our results showed that ISL exhibited cytotoxic effects on two human liver cancer cells in a dose-dependent manner. ISL significantly induced mitochondrial-related apoptosis and cell cycle arrest at the G2/M phase, which was accompanied by ROS accumulation in HepG2 cells. However, pretreatment with an ROS scavenger, N-acetyl-l-cysteine (NAC), inhibited ISL-induced apoptosis. In addition, ISL increased the phosphorylation levels of c-Jun N-terminal kinase (JNK), p38 kinase and inhibitor of NF-κB (IκB), and decreased the phosphorylation levels of extracellular signal-regulated kinase (ERK), signal transducer and activator of transcription 3 (STAT3), nuclear factor-kappa B (NF-κB), these effects were blocked by NAC and mitogen-activated protein kinase (MAPK) inhibitors. Taken together, the findings of this study indicate that ISL induced HepG2 cell apoptosis via ROS-mediated MAPK, STAT3, and NF-κB signaling pathways. Therefore, ISL may be a potential treatment for human HCC, as well as other cancer types.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Chalcones/pharmacology , MAP Kinase Signaling System/drug effects , Reactive Oxygen Species/metabolism , Cell Culture Techniques , Cell Survival/drug effects , Hep G2 Cells , Humans , NF-kappa B/metabolism , STAT3 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...