Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 30(11): 2531-2544, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38593212

ABSTRACT

PURPOSE: Initially, prostate cancer responds to hormone therapy, but eventually resistance develops. Beta emitter-based prostate-specific membrane antigen (PSMA)-targeted radionuclide therapy is approved for the treatment of metastatic castration-resistant prostate cancer. Here we introduce a targeted alpha therapy (TAT) consisting of the PSMA antibody pelgifatamab covalently linked to a macropa chelator and labeled with actinium-225 and compare its efficacy and tolerability with other TATs. EXPERIMENTAL DESIGN: The in vitro characteristics and in vivo biodistribution, antitumor efficacy, and tolerability of 225Ac-macropa-pelgifatamab (225Ac-pelgi) and other TATs were investigated in cell line- and patient-derived prostate cancer xenograft models. The antitumor efficacy of 225Ac-pelgi was also investigated in combination with the androgen receptor inhibitor darolutamide. RESULTS: Actinium-225-labeling of 225Ac-pelgi was efficient already at room temperature. Potent in vitro cytotoxicity was seen in PSMA-expressing (LNCaP, MDA-PCa-2b, and C4-2) but not in PSMA-negative (PC-3 and DU-145) cell lines. High tumor accumulation was seen for both 225Ac-pelgi and 225Ac-DOTA-pelgi in the MDA-PCa-2b xenograft model. In the C4-2 xenograft model, 225Ac-pelgi showed enhanced antitumor efficacy with a T/Cvolume (treatment/control) ratio of 0.10 compared with 225Ac-DOTA-pelgi, 225Ac-DOTA-J591, and 227Th-HOPO-pelgifatamab (227Th-pelgi; all at 300 kBq/kg) with T/Cvolume ratios of 0.37, 0.39, and 0.33, respectively. 225Ac-pelgi was less myelosuppressive than 227Th-pelgi. 225Ac-pelgi showed dose-dependent treatment efficacy in the patient-derived KuCaP-1 model and strong combination potential with darolutamide in both cell line- (22Rv1) and patient-derived (ST1273) xenograft models. CONCLUSIONS: These results provide a strong rationale to investigate 225Ac-pelgi in patients with prostate cancer. A clinical phase I study has been initiated (NCT06052306).


Subject(s)
Actinium , Alpha Particles , Antigens, Surface , Glutamate Carboxypeptidase II , Xenograft Model Antitumor Assays , Male , Humans , Animals , Mice , Cell Line, Tumor , Glutamate Carboxypeptidase II/antagonists & inhibitors , Glutamate Carboxypeptidase II/metabolism , Antigens, Surface/metabolism , Alpha Particles/therapeutic use , Tissue Distribution , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Radiopharmaceuticals/administration & dosage
2.
Arch Physiol Biochem ; 122(1): 36-45, 2016.
Article in English | MEDLINE | ID: mdl-26707125

ABSTRACT

Glycosylated lysosomal membrane protein (GLMP) has been reported to enhance the expression from a peroxisome proliferator-activated receptor alpha (PPARα) responsive promoter, but also to be an integral lysosomal membrane protein. Using myotubes established from wild-type and Glmp(gt/gt) mice, the importance of GLMP in skeletal muscle was examined. Glmp(gt/gt) myotubes expressed a more glycolytic phenotype than wild-type myotubes. Myotubes from Glmp(gt/gt) mice metabolized glucose faster and had a larger pool of intracellular glycogen, while oleic acid uptake, storage and oxidation were significantly reduced. Gene expression analyses indicated lower expression of three PPAR-isoforms, a co-regulator of PPAR (PGC1α) and several genes important for lipid metabolism in Glmp(gt/gt) myotubes. However, ablation of GLMP did not seem to substantially impair the response to PPAR agonists. In conclusion, myotubes established from Glmp(gt/gt) mice were more glycolytic than myotubes from wild-type animals, in spite of no differences in muscle fiber types in vivo.


Subject(s)
Fatty Acids/metabolism , Gene Deletion , Glucose/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Muscle Fibers, Skeletal/metabolism , Animals , Cell Differentiation/drug effects , Cell Differentiation/genetics , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Male , Membrane Proteins/deficiency , Mice , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/drug effects , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Oleic Acid/metabolism , Oxidation-Reduction/drug effects , Peroxisome Proliferator-Activated Receptors/agonists , Peroxisome Proliferator-Activated Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...