Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 258: 119456, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906445

ABSTRACT

Anaerobic biological treatment technology, especially denitrification and anaerobic ammonia oxidation (anammox) technology as mainstream process, played dominant role in the field of biological wastewater treatment. However, the above process was prone to sludge floating during high load operation and thereby affecting the efficient and stable operation of the system. Excessive production of extracellular polymeric substance (EPS) was considered to be the main reason for anaerobic granular sludge flotation, but the summaries in this area were not comprehensive enough. In this review, the potential mechanisms of denitrification and anammox sludge floatation were discussed from the perspective of granular sludge structural characteristics, nutrient transfer, and microbial flora change respectively, and the corresponding control strategies were also summarized. Finally, this paper indicated that future research on sludge flotation should focus on reducing the negative effects of EPS in sludge particles.

2.
Bioresour Technol ; 386: 129566, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37506936

ABSTRACT

The nitrogen removal efficiency and distribution of microbial community in a denitrification process aided by zero-valent iron (ZVI) under low carbon-to-nitrogen ratio (C/N) were assessed in this study. Experimental results demonstrated that the nitrogen removal efficiency (TNRE) increased to 96.4 ± 2.72% and 63.3 ± 4.02% after continuous addition of ZVI with molar ratio of ZVI to nitrate (NO3--N) (ZVI/N) of 6 at C/N of 3 and 2, respectively, which was 4% and 7.7% higher than the blank one. Meanwhile, extracellular polymeric substance (EPS) could be used as electron transfer medium and endogenous carbon source for denitrification system and also the production of which increased by 28.43% and 53.10% under ZVI stimulation compared to the control group. Finally, a symbiotic system composed by autotrophic and heterotrophic denitrification bacteria was formed by aid of ZVI. This study proposed new insights into denitrification process improved by ZVI.


Subject(s)
Carbon , Iron , Denitrification , Nitrogen , Extracellular Polymeric Substance Matrix , Nitrates , Bioreactors
SELECTION OF CITATIONS
SEARCH DETAIL
...