Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 123(15): 3291-3303, 2019 Apr 18.
Article in English | MEDLINE | ID: mdl-30889360

ABSTRACT

Next generation lithium ion batteries require higher energy and power density, which can be achieved by tailoring the cathode particle morphology, such as particle size, size distribution, and internal porosity. All these morphological features are determined during the cathode synthesis process, which consists of two steps, (i) coprecipitation and (ii) calcination. Transition metal hydroxide precursors are synthesized during the coprecipitation process, whereas their oxidation and lithiation occur during calcination. The size and size distribution of crystalline primary and aggregated secondary particles and their internal porosity are determined during coprecipitation. Operating conditions of the chemical reactor, such as solution pH, ammonia concentration, and stirring speed control the final morphological features. Here, a multiscale computational model has been developed to capture the nucleation and growth of crystalline primary particles and their aggregation into secondary transition metal hydroxide precursor particles. The simulations indicate that increasing solution pH and decreasing ammonia concentration lead to smaller sizes of the secondary particles. A phase map has been developed that can help identify the synthesis conditions needed for a specified particle size and size distribution.

2.
Anal Chem ; 88(2): 1088-91, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26710273

ABSTRACT

A method is herein described that allows for solution phase superoxide generated via the reduction of dioxygen in neutral aqueous solutions at a rotating disk electrode to be oxidized at a concentric Au ring electrode bearing a covalently linked monolayer of 3-mercapto-1-propanol, a modified surface that blocks the oxidation of solution phase of hydrogen peroxide. Experiments were performed in which the potential of a glassy carbon disk electrode was linearly scanned in the oxygen reduction region and the ring voltage was poised at a value at which superoxide oxidation ensued yielded bell-shaped ring currents. This behavior is consistent with changes in the relative rates constant for the processes involved in the mechanism of oxygen reduction on this carbonaceous material induced by the applied potential which so far had remained undetected using other techniques.

3.
Anal Chem ; 84(16): 7080-4, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22839734

ABSTRACT

The potential difference between two microreference electrodes, Δφ(sol), immersed in an aqueous sulfuric acid solution was monitored while performing conventional cyclic voltammetric experiments with a Pt disk electrode embedded in an insulating surface in an axisymmetric cell configuration. The resulting Δφ(sol) vs E curves, where E is the potential applied to the Pt disk electrode were remarkably similar to the voltammograms regardless of the position of the microreference probes. Most importantly, the actual values of Δφ(sol) were in very good agreement with those predicted by the primary current distribution using Newman's formalism (Newman, J. J. Electrochem. Soc. 1966, 113, 501-502). These findings afford a solid basis for the development of ohmic microscopy as a quantitative tool for obtaining spatially resolved images of electrodes displaying nonhomogenous surfaces.

4.
Anal Chem ; 84(8): 3764-70, 2012 Apr 17.
Article in English | MEDLINE | ID: mdl-22428526

ABSTRACT

The affinity of Cd(2+) toward carboxyl-terminated species covalently bound to monodisperse superparamagnetic iron oxide nanoparticles, Fe(3)O(4)(np)-COOH, was investigated in situ in aqueous electrolytes using rotating disk electrode techniques. Strong evidence that the presence of dispersed Fe(3)O(4)(np)-COOH does not affect the diffusion limiting currents was obtained using negatively and positively charged redox active species in buffered aqueous media (pH = 7) devoid of Cd(2+). This finding made it possible to determine the concentration of unbound Cd(2+) in solutions containing dispersed Fe(3)O(4)(np)-COOH, 8 and 17 nm in diameter, directly from the Levich equation. The results obtained yielded Cd(2+) adsorption efficiencies of ~20 µg of Cd/mg of Fe(3)O(4)(np)-COOH, which are among the highest reported in the literature employing ex situ methods. Desorption of Cd(2+) from Fe(3)O(4)(np)-COOH, as monitored by the same forced convection method, could be accomplished by lowering the pH, a process found to be highly reversible.


Subject(s)
Cadmium/chemistry , Ferric Compounds/chemistry , Magnetics , Metal Nanoparticles/chemistry , Adsorption , Carboxylic Acids/chemistry , Microscopy, Electron, Transmission , Particle Size
5.
Chem Commun (Camb) ; (23): 2629-31, 2008 Jun 21.
Article in English | MEDLINE | ID: mdl-18535689

ABSTRACT

Hollow mesoporous silica nanospheres (HMSNs) with tunable sizes of both sphere diameter (around 100 nm) and shell thickness have been successfully fabricated.

SELECTION OF CITATIONS
SEARCH DETAIL
...