Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PNAS Nexus ; 1(3): pgac139, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36741439

ABSTRACT

In response to environmental stressors, biological systems exhibit extraordinary adaptive capacity by turning destructive environmental stressors into constructive factors; however, the traditional engineering materials weaken and fail. Take the response of polymers to an aquatic environment as an example: Water molecules typically compromise the mechanical properties of the polymer network in the bulk and on the interface through swelling and lubrication, respectively. Here, we report a class of 3D-printable synthetic polymers that constructively strengthen their bulk and interfacial mechanical properties in response to the aquatic environment. The mechanism relies on a water-assisted additional cross-linking reaction in the polymer matrix and on the interface. As such, the typically destructive water can constructively enhance the polymer's bulk mechanical properties such as stiffness, tensile strength, and fracture toughness by factors of 746% to 790%, and the interfacial bonding by a factor of 1,000%. We show that the invented polymers can be used for soft robotics that self-strengthen matrix and self-heal cracks after training in water and water-healable packaging materials for flexible electronics. This work opens the door for the design of synthetic materials to imitate the constructive adaptation of biological systems in response to environmental stressors, for applications such as artificial muscles, soft robotics, and flexible electronics.

2.
Adv Mater ; 33(13): e2006946, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33604942

ABSTRACT

Living creatures are continuous sources of inspiration for designing synthetic materials. However, living creatures are typically different from synthetic materials because the former consist of living cells to support their growth and regeneration. Although natural systems can grow materials with sophisticated microstructures, how to harness living cells to grow materials with predesigned microstructures in engineering systems remains largely elusive. Here, an attempt to exploit living bacteria and 3D-printed materials to grow bionic mineralized composites with ordered microstructures is reported. The bionic composites exhibit outstanding specific strength and fracture toughness, which are comparable to natural composites, and exceptional energy absorption capability superior to both natural and artificial counterparts. This report opens the door for 3D-architectured hybrid synthetic-living materials with living ordered microstructures and exceptional properties.


Subject(s)
Mechanical Phenomena , Microtechnology/methods , Materials Testing
3.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33431680

ABSTRACT

The mechanical properties of engineering structures continuously weaken during service life because of material fatigue or degradation. By contrast, living organisms are able to strengthen their mechanical properties by regenerating parts of their structures. For example, plants strengthen their cell structures by transforming photosynthesis-produced glucose into stiff polysaccharides. In this work, we realize hybrid materials that use photosynthesis of embedded chloroplasts to remodel their microstructures. These materials can be used to three-dimensionally (3D)-print functional structures, which are endowed with matrix-strengthening and crack healing when exposed to white light. The mechanism relies on a 3D-printable polymer that allows for an additional cross-linking reaction with photosynthesis-produced glucose in the material bulk or on the interface. The remodeling behavior can be suspended by freezing chloroplasts, regulated by mechanical preloads, and reversed by environmental cues. This work opens the door for the design of hybrid synthetic-living materials, for applications such as smart composites, lightweight structures, and soft robotics.


Subject(s)
Cellulose/biosynthesis , Chemical Engineering/methods , Chloroplasts/radiation effects , Glucose/biosynthesis , Printing, Three-Dimensional/instrumentation , Cellulose/chemistry , Chloroplasts/chemistry , Chloroplasts/physiology , Cross-Linking Reagents/chemistry , Elastic Modulus , Glucose/chemistry , Humans , Isocyanates/chemistry , Light , Photosynthesis/radiation effects , Plant Leaves/chemistry , Plant Leaves/radiation effects , Robotics/methods , Spinacia oleracea/chemistry , Spinacia oleracea/radiation effects
4.
Research (Wash D C) ; 2020: 4825185, 2020.
Article in English | MEDLINE | ID: mdl-32110778

ABSTRACT

Most of the existing acoustic metamaterials rely on architected structures with fixed configurations, and thus, their properties cannot be modulated once the structures are fabricated. Emerging active acoustic metamaterials highlight a promising opportunity to on-demand switch property states; however, they typically require tethered loads, such as mechanical compression or pneumatic actuation. Using untethered physical stimuli to actively switch property states of acoustic metamaterials remains largely unexplored. Here, inspired by the sharkskin denticles, we present a class of active acoustic metamaterials whose configurations can be on-demand switched via untethered magnetic fields, thus enabling active switching of acoustic transmission, wave guiding, logic operation, and reciprocity. The key mechanism relies on magnetically deformable Mie resonator pillar (MRP) arrays that can be tuned between vertical and bent states corresponding to the acoustic forbidding and conducting, respectively. The MRPs are made of a magnetoactive elastomer and feature wavy air channels to enable an artificial Mie resonance within a designed frequency regime. The Mie resonance induces an acoustic bandgap, which is closed when pillars are selectively bent by a sufficiently large magnetic field. These magnetoactive MRPs are further harnessed to design stimuli-controlled reconfigurable acoustic switches, logic gates, and diodes. Capable of creating the first generation of untethered-stimuli-induced active acoustic metadevices, the present paradigm may find broad engineering applications, ranging from noise control and audio modulation to sonic camouflage.

SELECTION OF CITATIONS
SEARCH DETAIL
...