Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 12(9)2019 May 03.
Article in English | MEDLINE | ID: mdl-31058843

ABSTRACT

Ferroelectrics have recently attracted attention as a candidate class of materials for use in photovoltaic devices due to their abnormal photovoltaic effect. However, the current reported efficiency is still low. Hence, it is urgent to develop narrow-band gap ferroelectric materials with strong ferroelectricity by low-temperature synthesis. In this paper, the perovskite bismuth ferrite BiFeO3 (BFO) thin films were fabricated on SnO2: F (FTO) substrates by the sol-gel method and they were rapidly annealed at 450, 500 and 550 °C, respectively. The microstructure and the chemical state's evolution with annealing temperature were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS), and the relationship between the microstructure and electric, optical and photovoltaic properties were studied. The XRD, SEM and Raman results show that a pure phase BFO film with good crystallinity is obtained at a low annealing temperature of 450 °C. As the annealing temperature increases, the film becomes more uniform and has an improved crystallinity. The XPS results show that the Fe3+/Fe2+ ratio increases and the ratio of oxygen vacancies/lattice oxygen decreases with increasing annealing temperature, which results in the leakage current gradually being reduced. The band gap is reduced from 2.68 to 2.51 eV due to better crystallinity. An enhanced photovoltaic effect is observed in a 550 °C annealed BFO film with a short circuit current of 4.58 mA/cm2 and an open circuit voltage of 0.15 V, respectively.

2.
Sci Rep ; 7: 42143, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28181529

ABSTRACT

Extended X-ray Absorption Fine Structure (EXAFS) has been one of the few structural probes available for crystalline, non-crystalline and even highly disordered specimens. However, the data analysis involves a patchy and tinkering process, including back-and-forth fitting and filtering, leading to ambiguous answers sometimes. Here we try to resolve this long standing problem, to extract the inter-atomic distances from the experimental data by a single step minimization, in order to replace the tedious and tinkering process. The new strategy is built firmly by the mathematical logic, and made straightforward and undeniable. The finding demonstrates that it is possible to break off from the traditional patchy model fitting, and to remove the logical confusion of a priori prediction of the structure to be matched with experimental data, making it a much more powerful technique than the existing methods. The new method is expected to benefit EXAFS users covering all disciplines. Also, it is anticipated that the current work to be the motivation and inspiration to the further efforts.

3.
J Nanosci Nanotechnol ; 15(6): 4604-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26369087

ABSTRACT

The optical and structural properties of InGaN/GaN multi-quantum wells (MQWs) grown on sapphire by metalorganic chemical vapor deposition (MOCVD) have been investigated by optical measure- ments of photoluminescence (PL), and structural analysis methods of high-resolution X-ray diffrac- tion (HRXRD) and high-resolution transmission electron microscopy (HRTEM). Two typical samples are studied, both consisting of five periods of GaN barrier width of 11.8 nm with different InGaN well width of 2.95 nm and 1.7 nm. These results indicate that the crystal and optical properties of InGaN/GaN MQWs are improved with the narrower of the InGaN well width. The indium compositions, GaN barrier width and InGaN well width can be achieved by HRXRD simulation software, and the result is consistent with actual growth conditions of InGaN/GaN MQWs.

SELECTION OF CITATIONS
SEARCH DETAIL
...