Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
3.
Int J Biol Markers ; 39(2): 168-183, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38646803

ABSTRACT

BACKGROUND: The comprehensive expression level and potential molecular role of Cyclin A2 (CCNA2) in uterine corpus endometrial carcinoma (UCEC) remains undiscovered. METHODS: UCEC and normal endometrium tissues from in-house and public databases were collected for investigating protein and messenger RNA expression of CCNA2. The transcription factors of CCNA2 were identified by the Cistrome database. The prognostic significance of CCNA2 in UCEC was evaluated through univariate and multivariate Cox regression as well as Kaplan-Meier curve analysis. Single-cell RNA-sequencing (scRNA-seq) analysis was performed to explore cell types in UCEC, and the AUCell algorithm was used to investigate the activity of CCNA2 in different cell types. RESULTS: A total of 32 in-house UCEC and 30 normal endometrial tissues as well as 720 UCEC and 165 control samples from public databases were eligible and collected. Integrated calculation showed that the CCNA2 expression was up-regulated in the UCEC tissues (SMD = 2.43, 95% confidence interval 2.23∼2.64). E2F1 and FOXM1 were identified as transcription factors due to the presence of binding peaks on transcription site of CCNA2. CCNA2 predicted worse prognosis in UCEC. However, CCNA2 was not an independent prognostic factor in UCEC. The scRNA-seq analysis disclosed five cell types: B cells, T cells, monocytes, natural killer cells, and epithelial cells in UCEC. The expression of CCNA2 was mainly located in B cells and T cells. Moreover, CCNA2 was active in T cells and B cells using the AUCell algorithm. CONCLUSION: CCNA2 was up-regulated and mainly located in T cells and B cells in UCEC. Overexpression of CCNA2 predicted unfavorable prognosis of UCEC.


Subject(s)
Cyclin A2 , Endometrial Neoplasms , Humans , Female , Cyclin A2/genetics , Cyclin A2/metabolism , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Endometrial Neoplasms/metabolism , Prognosis , Middle Aged , Tissue Array Analysis/methods , RNA-Seq , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Single-Cell Gene Expression Analysis
4.
Cancer Med ; 13(7): e6947, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38545828

ABSTRACT

OBJECTIVE: This retrospective observational study aims to develop and validate artificial intelligence (AI) pathomics models based on pathological Hematoxylin-Eosin (HE) slides and pathological immunohistochemistry (Ki67) slides for predicting the pathological staging of colorectal cancer. The goal is to enable AI-assisted accurate pathological staging, supporting healthcare professionals in making efficient and precise staging assessments. METHODS: This study included a total of 267 colorectal cancer patients (training cohort: n = 213; testing cohort: n = 54). Logistic regression algorithms were used to construct the models. The HE image features were used to build the HE model, the Ki67 image features were used for the Ki67 model, and the combined model included features from both the HE and Ki67 images, as well as tumor markers (CEA, CA724, CA125, and CA242). The predictive results of the HE model, Ki67 model, and tumor markers were visualized through a nomogram. The models were evaluated using ROC curve analysis, and their clinical value was estimated using decision curve analysis (DCA). RESULTS: A total of 260 deep learning features were extracted from HE or Ki67 images. The AUC for the HE model and Ki67 model in the training cohort was 0.885 and 0.890, and in the testing cohort, it was 0.703 and 0.767, respectively. The combined model and nomogram in the training cohort had AUC values of 0.907 and 0.926, and in the testing cohort, they had AUC values of 0.814 and 0.817. In clinical DCA, the net benefit of the Ki67 model was superior to the HE model. The combined model and nomogram showed significantly higher net benefits compared to the individual HE model or Ki67 model. CONCLUSION: The combined model and nomogram, which integrate pathomics multi-modal data and clinical-pathological variables, demonstrated superior performance in distinguishing between Stage I-II and Stage III colorectal cancer. This provides valuable support for clinical decision-making and may improve treatment strategies and patient prognosis. Furthermore, the use of immunohistochemistry (Ki67) slides for pathomics modeling outperformed HE slide, offering new insights for future pathomics research.


Subject(s)
Artificial Intelligence , Colorectal Neoplasms , Humans , Ki-67 Antigen , Algorithms , Biomarkers, Tumor , Colorectal Neoplasms/diagnosis , Eosine Yellowish-(YS) , Nomograms , Retrospective Studies
5.
BMC Cancer ; 24(1): 368, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519974

ABSTRACT

OBJECTIVE: This study aimed to develop and validate an artificial intelligence radiopathological model using preoperative CT scans and postoperative hematoxylin and eosin (HE) stained slides to predict the pathological staging of gastric cancer (stage I-II and stage III). METHODS: This study included a total of 202 gastric cancer patients with confirmed pathological staging (training cohort: n = 141; validation cohort: n = 61). Pathological histological features were extracted from HE slides, and pathological models were constructed using logistic regression (LR), support vector machine (SVM), and NaiveBayes. The optimal pathological model was selected through receiver operating characteristic (ROC) curve analysis. Machine learnin algorithms were employed to construct radiomic models and radiopathological models using the optimal pathological model. Model performance was evaluated using ROC curve analysis, and clinical utility was estimated using decision curve analysis (DCA). RESULTS: A total of 311 pathological histological features were extracted from the HE images, including 101 Term Frequency-Inverse Document Frequency (TF-IDF) features and 210 deep learning features. A pathological model was constructed using 19 selected pathological features through dimension reduction, with the SVM model demonstrating superior predictive performance (AUC, training cohort: 0.949; validation cohort: 0.777). Radiomic features were constructed using 6 selected features from 1834 radiomic features extracted from CT scans via SVM machine algorithm. Simultaneously, a radiopathomics model was built using 17 non-zero coefficient features obtained through dimension reduction from a total of 2145 features (combining both radiomics and pathomics features). The best discriminative ability was observed in the SVM_radiopathomics model (AUC, training cohort: 0.953; validation cohort: 0.851), and clinical decision curve analysis (DCA) demonstrated excellent clinical utility. CONCLUSION: The radiopathomics model, combining pathological and radiomic features, exhibited superior performance in distinguishing between stage I-II and stage III gastric cancer. This study is based on the prediction of pathological staging using pathological tissue slides from surgical specimens after gastric cancer curative surgery and preoperative CT images, highlighting the feasibility of conducting research on pathological staging using pathological slides and CT images.


Subject(s)
Stomach Neoplasms , Humans , Stomach Neoplasms/diagnostic imaging , Artificial Intelligence , Algorithms , Eosine Yellowish-(YS) , Tomography, X-Ray Computed
6.
Transl Oncol ; 40: 101864, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141376

ABSTRACT

OBJECTIVE: This study aims to develop and validate an innovative radiopathomics model that combines radiomics and pathomics features to effectively differentiate between stages I-II and stage III gastric cancer (pathological staging). METHODS: Our study included 200 patients with well-defined stages of gastric cancer divided into a training cohort (n = 140) and a test cohort (n = 60). Radiomics features were extracted from contrast-enhanced CT images using PyRadiomics, while pathomics features were obtained from whole slide images of pathological specimens through a fine-tuned deep learning model (ResNet-18). After rigorous feature dimensionality reduction and selection, we constructed radiomics models (SVM_rad, LR_rad, and MLP_rad) and pathomics models (SVM_path, LR_path, and MLP_path) utilizing support vector machine (SVM), logistic regression (LR), and multilayer perceptron (MLP) algorithms. The optimal radiomics and pathomics models were chosen based on comprehensive evaluation criteria such as ROC curves, Hosmer‒Lemeshow tests, and calibration curve tests. Feature patterns extracted from the best-performing radiomics model (MLP_rad) and pathomics model (SVM_rad) were integrated to create a powerful radiopathomics nomogram. RESULTS: From a pool of 1834 radiomics features extracted from CT images, 14 were selected to construct radiomics models. Among these, the MLP_rad model exhibited the most robust predictive performance (AUC, training cohort: 0.843; test cohort: 0.797). Likewise, 10 pathomics features were chosen from 512 extracted from whole slide images to build pathomics models, with the SVM_path model demonstrating the highest predictive efficiency (AUC, training cohort: 0.937; test cohort: 0.792). The combined radiopathomics nomogram model exhibited optimal discriminative ability (AUC, training cohort: 0.951; test cohort: 0.837), as confirmed by decision curve analysis (DCA), which indicated superior clinical effectiveness. CONCLUSION: This study presents a cutting-edge radiopathomics nomogram model designed to predict pathological staging in gastric cancer, distinguishing between stages I-II and stage III. Our research leverages preoperative CT images and histopathological slides to forecast gastric cancer staging accurately, potentially facilitating the estimation of staging before radical gastric cancer surgery in the future.

7.
Clin Exp Med ; 23(8): 4341-4354, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37779169

ABSTRACT

Pulmonary adenocarcinoma is a common type of lung cancer that has been on the rise in recent years. Signet ring cell components (SRCC) can be present in various patterns of pulmonary adenocarcinoma, including papillary, acinar, and solid patterns. "Signet ring cell carcinoma" is a distinct subtype in the 2014 WHO classification of lung neoplasms, subsequent WHO classifications in 2015 and 2021 have deemed signet ring cells as accompanying morphological features with no clinical significance. The prognostic and clinical implications of SRCC in pulmonary adenocarcinoma remain controversial. Therefore, we conducted a meta-analysis to investigate the clinicopathological features and prognostic factors of SRCC in pulmonary adenocarcinoma. We conducted a comprehensive search in PubMed, EMBASE, and Web of Science to identify studies that examined the clinicopathological features and prognostic implications of pulmonary adenocarcinoma with SRCC. We used both fixed- and random-effects models to analyze the data and calculate the pooled hazard ratio (HR) and odds ratio (OR) with 95% confidence intervals (CIs). Additionally, we explored the prognostic significance of SRCC in pulmonary adenocarcinoma using the Surveillance, Epidemiology, and End Results (SEER) database. Our meta-analysis included 29 studies with pulmonary adenocarcinoma and SRCC components. The results showed that pulmonary adenocarcinoma with SRCC was associated with larger tumor size (OR = 1.99; 95% CI, 1.62-2.44, p < 0.001), advanced overall stage (OR = 5.18, 95% CI, 3.28-8.17, p < 0.00001) and lymph node stage (OR = 5.79, 95% CI, 1.96-17.09, p = 0.001), and worse overall survival (OS) compared to those without SRCC (HR = 1.80, 95% CI, 1.50-2.16, p < 0.00001). Analysis using the SEER dataset confirmed these findings. Our meta-analysis provides evidence that pulmonary adenocarcinoma with SRCC is associated with distinct clinicopathological features and a poorer prognosis. These findings have important implications for the management and treatment of patients. However, further studies are needed to validate these findings and explore the significance of SRCC in various subtypes of pulmonary adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Signet Ring Cell , Lung Neoplasms , Humans , Prognosis , Carcinoma, Signet Ring Cell/pathology , Proportional Hazards Models , Lung Neoplasms/diagnosis
8.
World J Surg Oncol ; 21(1): 324, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37833694

ABSTRACT

BACKGROUND: The growth arrest and DNA damage-inducible gene gamma (GADD45G), an important member of GADD45 family, has been connected to the development of certain human cancers. Our previous studies have confirmed that GADD45G expression could be upregulated by 4-methoxydalbergione (4MOD) in liver cancer cells, but its potential pathological role in hepatocellular carcinoma (HCC) has not been fully understood. This study aimed to determine potential role of GADD45G in HCC, and the effects of 4-methoxydalbergione (4MOD) on the regulation of GADD45G expression in vivo were also analyzed. METHODS: Publicly available data and in-house immunohistochemistry (IHC) experiments were utilized to explore the expression profiles and clinical significance of GADD45G in HCC samples. Functional enrichment analysis based on GADD45G co-expression genes was used to excavate the molecular mechanism of GADD45G in HCC. We also conducted in vivo experiment on BALB/c nude mice to excavate the inhibitory effect of 4MOD on HCC and to evaluate the differences in the expression of GADD45G in xenograft tissues between the 4MOD-treated and untreated groups. RESULTS: GADD45G displayed significant low expression in HCC tissues. Downregulated expression of GADD45G was positively correlated with some high risk factors in HCC patients and predicted worse prognosis of HCC patients. There was a close association of GADD45G mRNA expression and immune cells, including neutrophils, NK cells, CD8 T cells, and macrophages. Co-expressed genes of GADD45G were involved in several pathways including cell cycle, carbon metabolism, and peroxisome. 4MOD could significantly suppress the growth of HCC in vivo, and this inhibitory effect was dependent on the upregulation of GADD45G expression. CONCLUSION: GADD45G expression can be used as a new clinical biomarker for HCC and GADD45G may be a potential target for the anti-cancer effect of 4MOD in liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Mice, Nude , Benzoquinones , Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/genetics
9.
IET Syst Biol ; 17(5): 245-258, 2023 10.
Article in English | MEDLINE | ID: mdl-37488766

ABSTRACT

The progression of prostate cancer (PCa) leads to poor prognosis. However, the molecular mechanism of PCa is still not completely clear. This study aimed to elucidate the important role of centromere protein A (CENPA) in PCa. Large numbers of bulk RNA sequencing (RNA-seq) data and in-house immunohistochemistry data were used in analysing the expression level of CENPA in PCa and metastatic PCa (MPCa). Single-cell RNA-seq data was used to explore the expression status of CENPA in different prostate subpopulations. Enrichment analysis was employed to detect the function of CENPA in PCa. Clinicopathological parameters analysis was utilised in analysing the clinical value of CENPA. The results showed that CENPA was upregulated in PCa (standardised mean difference [SMD] = 0.83, p = 0.001) and MPCa (SMD = 0.61, p = 0.029). CENPA was overexpressed in prostate cancer stem cells (CSCs) with androgen receptor (AR) negative compared to epithelial cells with AR positive. CENPA may influence the development of PCa through affecting cell cycle. Patients with nodal metastasis had higher expression level of CENPA. And patients with high CENPA expression had poor disease-free survival. Taken together, Overexpression of CENPA may influence the development of PCa by regulating cell cycle and promoting metastasis.


Subject(s)
Clinical Relevance , Prostatic Neoplasms , Male , Humans , Centromere Protein A/genetics , Centromere Protein A/metabolism , Immunohistochemistry , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Data Mining , Cell Line, Tumor , Gene Expression Regulation, Neoplastic
10.
Funct Integr Genomics ; 23(3): 221, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37400733

ABSTRACT

Glycolysis has a major role in cancer progression and can affect the tumor immune microenvironment, while its specific role in lung adenocarcinoma (LUAD) remains poorly studied. We obtained publicly available data from The Cancer Genome Atlas and Gene Expression Omnibus databases and used R software to analyze the specific role of glycolysis in LUAD. The Single Sample Gene Set Enrichment Analysis (ssGSEA) indicated a correlation between glycolysis and unfavorable clinical outcome, as well as a repression effect on the immunotherapy response of LUAD patients. Pathway enrichment analysis revealed a significant enrichment of MYC targets, epithelial-mesenchymal transition (EMT), hypoxia, G2M checkpoint, and mTORC1 signaling pathways in patients with higher activity of glycolysis. Immune infiltration analysis showed a higher infiltration of M0 and M1 macrophages in patients with elevated activity of glycolysis. Moreover, we developed a prognosis model based on six glycolysis-related genes, including DLGAP5, TOP2A, KIF20A, OIP5, HJURP, and ANLN. Both the training and validation cohorts demonstrated the high efficiency of prognostic prediction in this model, which identified that patients with high risk may have a poorer prognosis and lower sensitivity to immunotherapy. Additionally, we also found that Th2 cell infiltration may predict poorer survival and resistance to immunotherapy. The study indicated that glycolysis is significantly associated with poor prognosis in patients with LUAD and immunotherapy resistance, which might be partly dependent on the Th2 cell infiltration. Additionally, the signature comprised of six genes related to glycolysis showed promising predictive value for LUAD prognosis.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Th2 Cells , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/therapy , Glycolysis/genetics , Immunotherapy , Lung Neoplasms/genetics , Lung Neoplasms/therapy , Tumor Microenvironment/genetics
11.
Expert Rev Mol Diagn ; 23(7): 607-618, 2023.
Article in English | MEDLINE | ID: mdl-37335774

ABSTRACT

INTRODUCTION: Exportin 1 (XPO1) is overexpressed in several solid tumors, and is associated with poor prognosis. Here, we aimed to evaluate the implication of XPO1 expression in solid tumors through a meta-analysis. METHODS: PubMed, Web of Science, and Embase databases were searched for articles published until February 2023. Statistical data of the patients, odds ratios and hazard ratios (HRs), together with their corresponding 95% confidence intervals (CIs) were pooled to assess clinicopathological features and survival outcomes. Besides, the Cancer Genome Atlas (TCGA) was used to explore the prognostic significance of XPO1 in solid tumors. RESULTS: A total of 22 works, comprising 2595 patients were included in this study. The results suggested that increased XPO1 expression was associated with a higher tumor grade, more lymph node metastasis, advanced tumor stage, and progressively worse total clinical stage. Additionally, high XPO1 expression was associated with worse overall survival (OS) (HR = 1.43, 95% CI = 1.12-1.81, P = 0.004) and shorter progression-free survival (HR = 1.40, 95% CI = 1.07-1.84, P = 0.01). An analysis using the TCGA dataset showed that high XPO1 expression was associated with poor OS and disease-free survival. CONCLUSIONS: XPO1 is a promising prognostic biomarker and may constitute a therapeutic target for solid tumors.PROSPERO registration number: CRD42023399159.


Subject(s)
Biomarkers, Tumor , Neoplasms , Humans , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Lymphatic Metastasis , Exportin 1 Protein
12.
J Healthc Eng ; 2023: 6710880, 2023.
Article in English | MEDLINE | ID: mdl-36776954

ABSTRACT

Background: 4-Methoxydalbergione (4MOD) is a flavonoid isolated from the heartwood of Dalbergia. Studies have demonstrated that 4MOD exerts anticancer activities on bladder cancer and astrocytoma. However, the anticancer activity of 4MOD in hepatocellular carcinoma (HCC) remains unknown. This study aims to examine its anticancer activities and mechanisms in human liver cancer cells. Methods: CCK-8, colony forming, wound healing, transwell migration, and AnnexinV/PI assays were used to assess the anticancer effects of 4MOD in HCC cells. RNA sequencing (RNA-Seq) was selected to explore the possible mechanisms underlying the anti-HCC activity of 4MOD. The mRNA expression levels of target genes were verified through quantitative real-time PCR (qRT-PCR). A lentiviral shRNA interference technique was used to silence GADD45G expression. GADD45G knockdown was employed to confirm the crucial role of GADD45G in the 4MOD-mediatedanti-HCC effects. Results: 4MOD inhibited HCC cells' proliferation and migration and promoted tumor cell apoptosis. RNA-Seq and qRT-PCR analyses revealed that 4MOD treatment increased GADD45G expression. Silencing GADD45G reversed 4MOD-mediated inhibition of proliferation, migration, and promotion of apoptosis. Conclusions: Our findings show that 4MOD elicits anti-HCC effects by upregulating GADD45G expression and could be a valuable anticancer agent for liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Up-Regulation , Cell Line, Tumor , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Apoptosis/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism
13.
Gels ; 8(12)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36547282

ABSTRACT

Natural gels are emerging as a hotspot of global research for their greenness, environmental-friendliness, and good hydrate inhibition performance. However, previous studies mostly performed experiments for simple pure water systems and the inhibition mechanism in the sediment environment remains unclear. Given this, the inhibition performance of xanthan gum and pectin on hydrate nucleation and growth in sediment environments was evaluated via hydrate formation inhibition tests, and the inhibition internal mechanisms were revealed via a comprehensive analysis integrating various methods. Furthermore, the influences of natural gels on sediment dispersion stability and low-temperature fluid rheology were investigated. Research showed that the sediments of gas hydrate reservoirs in the South China Sea are mainly composed of micro-nano quartz and clay minerals. Xanthan gum and pectin can effectively inhibit the hydrate formation via the joint effects of the binding, disturbing, and interlayer mass transfer suppression processes. Sediments promote hydrate nucleation and yet inhibit hydrate growth. The interaction of sediments with active groups of natural gels weakens the abilities of gels to inhibit hydrate nucleation and reduce hydrate formation. Nonetheless, sediments help gels to slow down hydrate formation. Our comprehensive analysis pointed out that pectin with a concentration of 0.5 wt% can effectively inhibit the hydrate nucleation and growth while improving the dispersion stability and low-temperature rheology of sediment-containing fluids.

14.
Gels ; 8(12)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36547350

ABSTRACT

With the exploration and development of high-temperature and high-salt deep oil and gas, more rigorous requirements are warranted for the performance of water-based drilling fluids (WBDFs). In this study, acrylamide, 2-acrylamide-2-methylpropanesulfonic acid, diallyl dimethyl ammonium chloride, and N-vinylpyrrolidone were synthesized by free radical copolymerization in an aqueous solution to form a temperature and salt-resistant zwitterionic polymer gel filtration loss reducer (AADN). The zwitterionic polymer had excellent adsorption and hydration groups, which could effectively combine with bentonite through hydrogen bonds and electrostatic attraction, strengthening the hydration film thickness on the surface of bentonite, and promoting the stable dispersion of drilling fluid. In addition, the reverse polyelectrolyte effect of zwitterionic polymers strengthened the drilling fluid's ability to resist high-temperature and high-salt. The AADN-based drilling fluid showed excellent rheological and filtration control properties (FLAPI < 8 mL, FLHTHP < 29.6 mL) even after aging at high-temperature (200 °C) and high-salt (20 wt% NaCl) conditions. This study provides a new strategy for simultaneously improving the high-temperature and high-salt tolerance of WBDFs, presenting the potential for application in drilling in high-temperature and high-salt deep formations.

15.
World J Surg Oncol ; 20(1): 359, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36369089

ABSTRACT

BACKGROUND: The molecular mechanism of laryngeal squamous cell carcinoma (LSCC) is not completely clear, which leads to poor prognosis and treatment difficulties for LSCC patients. To date, no study has reported the exact expression level of zinc finger protein 71 (ZNF71) and its molecular mechanism in LSCC. METHODS: In-house immunohistochemistry (IHC) staining (33 LSCC samples and 29 non-LSCC samples) was utilized in analyzing the protein expression level of ZNF71 in LSCC. Gene chips and high-throughput sequencing data collected from multiple public resources (313 LSCC samples and 192 non-LSCC samples) were utilized in analyzing the exact mRNA expression level of ZNF71 in LSCC. Single-cell RNA sequencing (scRNA-seq) data was used to explore the expression status of ZNF71 in different LSCC subpopulations. Enrichment analysis of ZNF71, its positively and differentially co-expressed genes (PDCEGs), and its downstream target genes was employed to detect the potential molecular mechanism of ZNF71 in LSCC. Moreover, we conducted correlation analysis between ZNF71 expression and immune infiltration. RESULTS: ZNF71 was downregulated at the protein level (area under the curve [AUC] = 0.93, p < 0.0001) and the mRNA level (AUC = 0.71, p = 0.023) in LSCC tissues. Patients with nodal metastasis had lower protein expression level of ZNF71 than patients without nodal metastasis (p < 0.05), and male LSCC patients had lower mRNA expression level of ZNF71 than female LSCC patients (p < 0.01). ZNF71 was absent in different LSCC subpopulations, including cancer cells, plasma cells, and tumor-infiltrated immune cells, based on scRNA-seq analysis. Enrichment analysis showed that ZNF71 and its PDCEGs may influence the progression of LSCC by regulating downstream target genes of ZNF71. These downstream target genes of ZNF71 were mainly enriched in tight junctions. Moreover, downregulation of ZNF71 may influence the development and even therapy of LSCC by reducing immune infiltration. CONCLUSION: Downregulation of ZNF71 may promote the progression of LSCC by reducing tight junctions and immune infiltration; this requires further study.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Laryngeal Neoplasms , Humans , Male , Female , Squamous Cell Carcinoma of Head and Neck/genetics , Laryngeal Neoplasms/genetics , Laryngeal Neoplasms/pathology , Down-Regulation , Immunohistochemistry , Carcinoma, Squamous Cell/pathology , RNA, Messenger/genetics , Data Mining , Zinc Fingers , Staining and Labeling , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Prognosis
16.
Gels ; 8(11)2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36421557

ABSTRACT

To control the filtration loss of drilling fluids in salt-gypsum formations, a novel type of zwitterionic polymer gel (DNDAP) was synthesized by free radical polymerization, which was used as a salt- and calcium-resistant fluid loss reducer for water-based drilling fluids (WBDF). DNDAP was prepared with N, N-dimethylacrylamide (DMAA), N-vinylpyrrolidone (NVP), Diallyl dimethyl ammonium chloride (DMDAAC), 2-acrylamide-2-methylpropaneonic acid (AMPS), and isopentenol polyether (TPEG) as raw materials. Fourier transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance (1H-NMR) were used to characterize the composition and structure of the DNDAP copolymer. The thermal stability of DNDAP was evaluated by the use of thermogravimetric analysis (TGA). WBDF with DNDAP was analyzed for zeta potential and particle size and the corresponding filter cake underwent energy dispersive spectrum (EDS) analysis and scanning electron microscope (SEM) analysis. The results showed that the thermal decomposition of DNDAP mainly occurred above 303 °C. DNDAP exhibits excellent rheological and filtration properties in water-based drilling fluids, even under high-temperature aging (up to 200 °C) and high salinity (20 wt% NaCl or 5 wt% CaCl2) environments. The strong adsorption effect of DNDAP makes the particle size of bentonite reasonably distributed to form a dense mud cake that reduces filtration losses.

17.
Pathol Res Pract ; 238: 154109, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36115333

ABSTRACT

BACKGROUND: Patients with oral squamous cell carcinoma (OSCC) have poor prognoses due to a limited understanding of the pathogenesis of OSCC. Zinc finger protein (ZNF) is the largest transcription factor family in the human genome and exert diverse and important functions. Nevertheless, the exact expression status and molecular mechanism of ZNF71 have not been described in OSCC. Therefore, this study aimed to identify the specific expression level of ZNF71 in OSCC tissues and to further interpret the potential molecular mechanism of ZNF71 in the pathogenesis of OSCC. METHODS: In-house immunohistochemical staining of 116 OSCC samples and 29 non-OSCC samples was employed to detect the expression status of ZNF71 at the protein level of OSCC tissues. Single-cell RNA sequencing data from 7 OSCC samples was used to explore the expression landscape of ZNF71 in different cell types from OSCC tissues. High-throughput RNA sequencing data and gene chips data from 893 OSCC samples and 301 non-OSCC samples were utilized to identify the specific expression level of ZNF71 at the bulk mRNA level of OSCC tissues. Here, standardized mean difference (SMD) value was applied to calculate the expression differences between OSCC group and non-OSCC group. Multiple datasets were included; hence, the results were considered to be more reliable. Sensitivity analysis was conducted to evaluate the stability of the results. Enrichment analysis and immune infiltration analysis were used to explore the underlying molecular mechanism of ZNF71 in OSCC. RESULTS: ZNF71 was significantly downregulated in OSCC tissues at the protein level (SMD = -1.96, 95 % confidence interval [95 % CI]: -2.43 to -1.50). ZNF71 was absent in various cell types from OSCC tissues including cancerous epithelial cells and tumor-infiltrating immune cells. ZNF71 was downregulated in OSCC tissues at the bulk mRNA level (SMD = -0.38, 95 % CI: -0.75 to -0.02). Enrichment analysis showed that positively and differentially co-expressed genes mainly concentrated on "herpes simplex virus 1 infection" and "regulation of plasma membrane bounded cell projection organization", and negatively and differentially co-expressed genes mainly participated in "cell cycle" and "DNA metabolic process". Moreover, the putative target genes of ZNF71 mainly participated in "cellular respiration" and "protein catabolic process". Finally, immune infiltration analysis revealed that ZNF71 expression was positively correlated with multiple immune cells including activated B cells, memory B cells, and natural killer (NK) cells, and negatively correlated with various immune cells, including CD56 bright NK cells, neutrophil, and immature dendritic cells. CONCLUSION: The downregulation of ZNF71 may influence the initiation and promotion of OSCC by reducing immune infiltration, accelerating cell cycle progression, and affecting metabolic process, and this requires further research.

18.
Adv Mater ; 34(40): e2109973, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35998517

ABSTRACT

In this study, it is shown for the first time that a reduced graphene oxide (rGO) carrier has a 20-fold higher catalysis rate than graphene oxide in Ag+ reduction. Based on this, a tumor microenvironment-enabled in situ silver-based electrochemical oncolytic bioreactor (SEOB) which switched Ag+ prodrugs into in situ therapeutic silver nanoparticles with and above 95% transition rate is constructed to inhibit the growths of various tumors. In this SEOB-enabled intratumoral nanosynthetic medicine, intratumoral H2 O2 and rGO act as the reductant and the catalyst, respectively. Chelation of aptamers to the SEOB-unlocked prodrugs increases the production of silver nanoparticles in tumor cells, especially in the presence of Vitamin C, which is broken down in tumor cells to supply massive amounts of H2 O2 . Consequently, apoptosis and pyroptosis are induced to cooperatively contribute to the considerably-elevated anti-tumor effects on subcutaneous HepG2 and A549 tumors and orthotopic implanted HepG2 tumors in livers of nude mice. The specific aptamer targeting and intratumoral silver nanoparticle production guarantee excellent biosafety since it fails to elicit tissue damages in monkeys, which greatly increases the clinical translation potential of the SEOB system.


Subject(s)
Graphite , Metal Nanoparticles , Prodrugs , Animals , Ascorbic Acid , Bioreactors , Electrochemical Techniques , Mice , Mice, Nude , Reducing Agents , Silver
19.
Pathol Oncol Res ; 28: 1610307, 2022.
Article in English | MEDLINE | ID: mdl-35693634

ABSTRACT

Purpose: Our purpose was to systematically appraise the clinicopathological significance and explore the molecular bases of CKS2 in endometrial carcinoma. Patients and Methods: We measured the clinicopathological significance of CKS2 using diverse methods of public RNA-seq, microarrays, and in-house tissue microarrays to investigate the molecular basis of CKS2 in endometrial carcinoma through upstream transcriptional analysis, immune infiltration correlation analysis, and co-expression analysis. Results: Both the analysis for public RNA-seq plus the microarray data and in-house tissue microarray confirmed the significant overexpression of CKS2 in a total of 1,021 endometrial carcinoma samples compared with 279 non-cancer endometrium samples (SMD = 2.10, 95% CI = 0.72-3.48). The upregulated CKS2 was significantly related to the lymph node metastasis and advanced clinical grade of endometrial carcinoma patients (p < 0.001). Mutation types such as amplification and mRNA occurred with high frequency in the CKS2 gene in endometrial carcinoma patients. A series of miRNAs and transcription factors, such as hsa-miR-26a, hsa-miR-130a, hsa-miR-30, E2F4, MAX, and GABPA, were predicted to regulate the transcription and expression of CKS2. Significant links were found between CKS2 expression and the infiltration level of B cells, CD4+ T cells, and neutrophils in endometrial carcinoma. CKS2-coexpressed genes were actively involved in pathways such as the mitotic cell cycle process, PID aurora B pathway, and prolactin signaling pathway. Conclusion: The overexpressed CKS2 showed positive correlations with the clinical progression of endometrial carcinoma and was associated with various cancer-related biological processes and pathways, showing potential as a promising clinical biomarker for endometrial carcinoma.


Subject(s)
CDC2-CDC28 Kinases , Endometrial Neoplasms , MicroRNAs , CDC2-CDC28 Kinases/genetics , Carrier Proteins/genetics , Cell Cycle Proteins/genetics , Cell Proliferation/genetics , Endometrial Neoplasms/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/genetics
20.
J Ovarian Res ; 15(1): 47, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35477468

ABSTRACT

BACKGROUND: Primary ovarian lymphoma has been difficult to diagnose clinically and pathologically due to its rare incidence and non-specific clinical symptoms. CASE PRESENTATION: A 75-year-old female patient was reported in this study. The patient had a six-month history of changes in bowel habits, with occasional black feces and paroxysmal pain in the abdomen. The computed tomography scan of the pelvic cavity illustrated that rectal cancer and sigmoid colon adenocarcinoma invaded the lower part of the right-side ureter. The patient was once treated with excision of part of small intestine, fallopian tube and ovary, and uterus. The pathological examination of these excised tissues, combined with the immunohistochemistry, confirmed that the female patient suffered from primary ovarian diffuse large B-cell lymphoma (DLBCL), and the lymphoma had invaded the entire right-side ovary tissues, serous membranes on the posterior surface of the uterus, and the wall of small intestine. CONCLUSION: Few reports were available regarding the primary ovarian DLBCL. The initial symptom of the patient was the changes in bowel habits, which had not been reported beforehand. Hopefully, this case could helpfully render the early diagnosis possible, and increase clinical understanding of primary ovarian DLBCL, which would thereby reduce the chance of misdiagnosis.


Subject(s)
Adenocarcinoma , Colonic Neoplasms , Lymphoma, Large B-Cell, Diffuse , Adenocarcinoma/pathology , Aged , Colonic Neoplasms/pathology , Fallopian Tubes/pathology , Female , Humans , Lymphoma, Large B-Cell, Diffuse/diagnostic imaging , Lymphoma, Large B-Cell, Diffuse/pathology , Ovary
SELECTION OF CITATIONS
SEARCH DETAIL
...