Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem ; 110: 117793, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38917622

ABSTRACT

The pathogenic role of anti-phospholipase A2 receptor (PLA2R) antibodies in primary membranous nephropathy (MN) has been well-established. This study aimed to identify potential small-molecule inhibitors against the PLA2R-antibody interaction, offering potential therapeutic benefits. A comprehensive screening of over 4000 small-molecule compounds was conducted by ELISA to assess their inhibitory effects on the binding between the immobilized full-length extracellular PLA2R and its antibodies. The affinity of anti-PLA2R IgG from MN patients and the inhibitory efficacy of each compound were evaluated via surface plasmon resonance (SPR). Human podocyte injuries were analyzed using CCK-8 assay, wound healing assay, western blot analysis, and immunofluorescence, after exposure to MN plasma +/- blocking compound. Fifteen compounds were identified as potential inhibitors, demonstrating inhibition rates >20 % for the PLA2R-antibody interaction. Anti-PLA2R IgG exhibited a consistent affinity among patients (KD = 10-8 M). Macrocarpal B emerged as the most potent inhibitor, reducing the antigen-antibody interaction by nearly 30 % in a dose-dependent manner, comparable to the performance of the 31-mer peptide from the CysR domain. Macrocarpal B bound to the immobilized PLA2R with an affinity of 1.47 × 10-6 M, while showing no binding to anti-PLA2R IgG. Human podocytes exposed to MN plasma showed decreased podocin expression, impaired migration function, and reduced cell viability. Macrocarpal B inhibited the binding of anti-PLA2R IgG to podocytes and reduced the cellular injuries.

2.
Mol Cancer ; 23(1): 74, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582885

ABSTRACT

BACKGROUND AND AIMS: Sorafenib is a major nonsurgical option for patients with advanced hepatocellular carcinoma (HCC); however, its clinical efficacy is largely undermined by the acquisition of resistance. The aim of this study was to identify the key lncRNA involved in the regulation of the sorafenib response in HCC. MATERIALS AND METHODS: A clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) single-guide RNA (sgRNA) synergistic activation mediator (SAM)-pooled lncRNA library was applied to screen for the key lncRNA regulated by sorafenib treatment. The role of the identified lncRNA in mediating the sorafenib response in HCC was examined in vitro and in vivo. The underlying mechanism was delineated by proteomic analysis. The clinical significance of the expression of the identified lncRNA was evaluated by multiplex immunostaining on a human HCC microtissue array. RESULTS: CRISPR/Cas9 lncRNA library screening revealed that Linc01056 was among the most downregulated lncRNAs in sorafenib-resistant HCC cells. Knockdown of Linc01056 reduced the sensitivity of HCC cells to sorafenib, suppressing apoptosis in vitro and promoting tumour growth in mice in vivo. Proteomic analysis revealed that Linc01056 knockdown in sorafenib-treated HCC cells induced genes related to fatty acid oxidation (FAO) while repressing glycolysis-associated genes, leading to a metabolic switch favouring higher intracellular energy production. FAO inhibition in HCC cells with Linc01056 knockdown significantly restored sensitivity to sorafenib. Mechanistically, we determined that PPARα is the critical molecule governing the metabolic switch upon Linc01056 knockdown in HCC cells and indeed, PPARα inhibition restored the sorafenib response in HCC cells in vitro and HCC tumours in vivo. Clinically, Linc01056 expression predicted optimal overall and progression-free survival outcomes in HCC patients and predicted a better sorafenib response. Linc01056 expression indicated a low FAO level in HCC. CONCLUSION: Our study identified Linc01056 as a critical epigenetic regulator and potential therapeutic target in the regulation of the sorafenib response in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Humans , Mice , Animals , Sorafenib/pharmacology , Sorafenib/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , RNA, Long Noncoding/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , RNA, Guide, CRISPR-Cas Systems , PPAR alpha/genetics , PPAR alpha/metabolism , PPAR alpha/therapeutic use , Proteomics , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic
3.
J Exp Clin Cancer Res ; 43(1): 42, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38317186

ABSTRACT

BACKGROUND: Par-3 Family Cell Polarity Regulator (PARD3) is a cellular protein essential for asymmetric cell division and polarized growth. This study aimed to study the role of PARD3 in hepatic tumorigenesis. METHODS: The essential role of PARD3 in mediating hepatic tumorigenesis was assessed in diet-induced spontaneous liver tumour and syngeneic tumour models. The mechanism of PARD3 was delineated by bulk and single-cell RNA sequencing. The clinical significance of PARD3 was identified by tissue array analysis. RESULTS: PARD3 was overexpressed in tumour tissues and PARD3 overexpression was positively correlated with high tumour stage as well as the poor prognosis in patients. In models of spontaneous liver cancer induced by choline-deficient, amino acid-defined (CDAA) and methionine-choline-deficient (MCD) diets, upregulation of PARD3 was induced specifically at the tumorigenesis stage rather than other early stages of liver disease progression. Site-directed knockout of PARD3 using an adeno-associated virus 8 (AAV8)-delivered CRISPR/Cas9 single-guide RNA (sgRNA) plasmid blocked hepatic tumorigenesis, while PARD3 overexpression accelerated liver tumour progression. In particular, single-cell sequencing analysis suggested that PARD3 was enriched in primitive tumour cells and its overexpression enhanced tumour-initiating cell (TICs). Overexpression of PARD3 maintained the self-renewal ability of the CD133+ TIC population within hepatocellular carcinoma (HCC) cells and promoted the in vitro and in vivo tumorigenicity of CD133+ TICs. Transcriptome analysis revealed that Sonic Hedgehog (SHH) signalling was activated in PARD3-overexpressing CD133+ TICs. Mechanistically, PARD3 interacted with aPKC to further activate SHH signalling and downstream stemness-related genes. Suppression of SHH signalling and aPKC expression attenuated the in vitro and in vivo tumorigenicity of PARD3-overexpressing CD133+ TICs. Tissue array analysis revealed that PARD3 expression was positively associated with the phosphorylation of aPKC, SOX2 and Gli1 and that the combination of these markers could be used to stratify HCC patients into two clusters with different clinicopathological characteristics and overall survival prognoses. The natural compound berberine was selected as a potent suppressor of PARD3 expression and could be used as a preventive agent for liver cancer that completely blocks diet-induced hepatic tumorigenesis in a PARD3-dependent manner. CONCLUSION: This study revealed PARD3 as a potential preventive target of liver tumorigenesis via TIC regulation.


Subject(s)
Adaptor Proteins, Signal Transducing , Carcinoma, Hepatocellular , Cell Cycle Proteins , Liver Neoplasms , Humans , Adaptor Proteins, Signal Transducing/metabolism , Carcinogenesis/metabolism , Carcinoma, Hepatocellular/pathology , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Transformation, Neoplastic/metabolism , Choline/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Liver Neoplasms/pathology , Neoplastic Stem Cells/metabolism , RNA, Guide, CRISPR-Cas Systems
4.
Int J Biol Sci ; 19(16): 5257-5274, 2023.
Article in English | MEDLINE | ID: mdl-37928255

ABSTRACT

A high postoperative tumour recurrence rate has significantly rendered a poorer prognosis in hepatocellular carcinoma (HCC) patients. The aim of this study is to identify a natural compound genipin as a potential and effective candidate to suppress the postoperative recurrence of HCC. Clinical analysis revealed that infiltration of macrophage into the adjacent tissue but not HCC predicted patients' poor prognosis on recurrence-free survival. Genipin intervention suppressed the Ly6C+CD11b+F4/80+ pro-inflammatory macrophage infiltration in the postoperative liver of mice. Adoptive transfer of pro-inflammatory monocytic cells completely abolished the inhibitory effect of genipin on HCC recurrence. Transcriptomic analysis on FACs-sorted macrophages from the postoperative livers of mice revealed that PPARγ signalling was involved in the regulatory effect of genipin. Genipin is directly bound to PPARγ, causing PPARγ-induced p65 degradation, which in turn suppressed the transcriptional activation of CCR2 signalling. PPARγ antagonist GW9662 abrogated the effects of genipin on CCR2-medaited macrophage infiltration as well as HCC recurrence. Cytokine array analysis identified that genipin intervention potently suppressed the secretion of CCL2 further partially contributed to the pro-inflammatory macrophage infiltration into the postoperative liver. Multiplex immunostaining on tissue array of human HCC revealed that PPARγ expression was inversely associated with CCL2 and the macrophage infiltration in the adjacent liver of HCC patients. Our works provide scientific evidence for the therapeutic potential of genipin as a PPARγ agonist in preventing postoperative recurrence of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Mice , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , PPAR gamma/genetics , Neoplasm Recurrence, Local , Macrophages , Receptors, CCR2/genetics
5.
Drug Resist Updat ; 71: 101015, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37924725

ABSTRACT

AIMS: Therapeutic outcome of sorafenib in hepatocellular carcinoma (HCC) is undermined by the development of drug resistance. This study aimed to identify the critical microRNA (miRNA) which is responsible for sorafenib resistance at the genomic level. METHODS: CRISPR/Cas9 screen followed by gain- and loss-of-function assays both in vitro and in vivo were applied to identify the role of miR-3689a-3p in mediating sorafenib response in HCC. The upstream and downstream molecules of miR-3689a-3p and their mechanism of action were investigated. RESULTS: CRISPR/Cas9 screening identified miR-3689a-3p was the most up-regulated miRNA in sorafenib sensitive HCC. Knockdown of miR-3689a-3p significantly increased sorafenib resistance, while its overexpression sensitized HCC response to sorafenib treatment. Proteomic analysis revealed that the effect of miR-3689a-3p was related to the copper-dependent mitochondrial superoxide dismutase type 1 (SOD1) activity. Mechanistically, miR-3689a-3p targeted the 3'UTR of the intracellular copper chaperone for superoxide dismutase (CCS) and suppressed its expression. As a result, miR-3689a-3p disrupted the intracellular copper trafficking and reduced SOD1-mediated scavenge of mitochondrial oxidative stress that eventually caused HCC cell death in response to sorafenib treatment. CCS overexpression blunted sorafenib response in HCC. Clinically, miR-3689a-3p was down-regulated in HCC and predicted favorable prognosis for HCC patients. CONCLUSION: Our findings provide comprehensive evidence for miR-3689a-3p as a positive regulator and potential druggable target for improving sorafenib treatment in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Sorafenib/pharmacology , Sorafenib/therapeutic use , Superoxide Dismutase-1 , CRISPR-Cas Systems , Copper , Proteomics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , MicroRNAs/genetics , Superoxide Dismutase/genetics , Oxidative Stress/genetics
6.
Cytokine Growth Factor Rev ; 73: 135-149, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37543438

ABSTRACT

In the tumor microenvironment (TME), exosomes secreted by cells form interactive networks between the tumor cells and immune cells, thereby regulating immune signaling cascades in the TME. As key messengers of cell-to-cell communication in the TME, exosomes not only take charge of tumor cell antigen presentation to the immune cells, but also regulate the activities of immune cells, inhibit immune function, and, especially, promote immune resistance, all of which affects the therapeutic outcomes of tumors. Exosomes, which are small-sized vesicles, possess some remarkable advantages, including strong biological activity, a lack of immunogenicity and toxicity, and a strong targeting ability. Based on these characteristics, research on exosomes as biomarkers or carriers of tumor therapeutic drugs has become a research hotspot in related fields. This review describes the role of exosomes in cell communications in the TME, summarizes the effectiveness of exosome-based immunotherapy in overcoming immune resistance in cancer treatment, and systematically summarizes and discusses the characteristics of exosomes from different cell sources. Furthermore, the prospects and challenges of exosome-related therapies are discussed.

7.
Ying Yong Sheng Tai Xue Bao ; 34(1): 187-195, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36799393

ABSTRACT

National park is a major institutional innovation to promote the construction of ecological civilization in China. How to scientifically classify types and identify spaces is a fundamental task in the layout and construction of national parks, which is critically needed in practice. Based on the national conditions of China and related international experience, we classified national parks into wilderness oriented, ecological priority, recreation oriented, and heritage oriented types, and constructed a relatively complete national park classification scheme. With Yunnan Province as a case, which has a high degree of natural and human diversity, we established a set of index and zoning rules based on "dual evaluation". The artificial neural networks were used to establish a land use evolution learning algorithm. The meta-cellular automata incorporating an adaptive inertia mechanism was used for spatio-temporal simulation. Spatial identification of different types of national parks was performed for the whole province under high resolution. The contraction-expansion principle was applied to compare, correct, and optimize the identified areas. A comprehensive plan for the future layout of Yunnan National Park was proposed. The results showed that national parks in Yunnan Province were mainly concentrated in the Sanjiang region and the Hengduan Mountains, the west and southwest Yunnan. Those three types of areas could be used as key areas for future natio-nal park planning and protection. The general and worth popularizing research paradigm for national park typology and spatial identification established here could be served as a reference for national application.


Subject(s)
Algorithms , Parks, Recreational , Humans , China , Computer Simulation , Conservation of Natural Resources
8.
J Adv Res ; 51: 181-196, 2023 09.
Article in English | MEDLINE | ID: mdl-36351536

ABSTRACT

INTRODUCTION: Hyperactivated histone deacetylases (HDACs) act as epigenetic repressors on gene transcription and are frequently observed in human hepatocellular carcinoma (HCC). Although multiple pharmacological HDAC inhibitors (HDACis) have been developed, none is available in human HCC. OBJECTIVES: To investigate the pharmacological effects of a fangchinoline derivative HL23, as a novel HDACi and its molecular mechanisms through TXNIP-mediated potassium deprivation in HCC. METHODS: Both in vitro assays and orthotopic HCC mouse models were used to investigate the effects of HL23 in this study. The inhibitory activity of HL23 on HDACs was evaluated by in silico studies and cellular assays. Chromatin immunoprecipitation (ChIP) was conducted to confirm the regulation of HL23 on acetylation mark at TXNIP promoter. Genome-wide transcriptome analysis together with bioinformatic analysis were conducted to identify the regulatory mechanisms of HL23. The clinical significance of TXNIP and HDACs was evaluated by analysing publicly available database. RESULTS: HL23 exerted compatible HDACs inhibition potency as Vorinostat (SAHA) while had superior anti-HCC effects than SAHA and sorafenib. Both in vitro and in vivo studies showed HL23 significantly suppressed HCC progression and metastasis. HL23 significantly upregulated TXNIP expression via regulating acetylation mark (H3K9ac) at TXNIP promoter. TXNIP was responsible for anti-HCC activity of HL23 through mediating potassium channel activity. HDAC1 was predicted to be the target of HL23 and HDAC1lowTXNIPhigh could jointly predict promising survival outcome of patients with HCC. Combination treatment with HL23 and sorafenib could significantly enhance sorafenib efficacy. CONCLUSION: Our study identified HL23 as a novel HDACi through enhancing acetylation at TXNIP promoter to trigger TXNIP-dependent potassium deprivation and enhance sorafenib efficacy in HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Sorafenib/pharmacology , Sorafenib/therapeutic use , Histones/metabolism , Histones/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Acetylation , Vorinostat/pharmacology , Vorinostat/therapeutic use , Histone Deacetylases/metabolism , Histone Deacetylases/therapeutic use , Thioredoxins/metabolism , Thioredoxins/therapeutic use
9.
Mediators Inflamm ; 2022: 3855698, 2022.
Article in English | MEDLINE | ID: mdl-36032782

ABSTRACT

Background: Our previous work has shown that inflammatory processes play a detrimental role in the pathophysiology of acute ischemic stroke (AIS). Neutrophil extracellular traps (NETs) have been recognized as a key contributor to the proinflammatory response in AIS and could aggravate blood-brain barrier (BBB) damage. Recently, experimental and clinical researches showed that Edaravone Dexborneol (Eda.B), which is comprised of two active ingredients, Edaravone and (+)-Borneol, was effective in treatment of AIS. However, it is not clear whether the effects of Eda.B against AIS are related to NETs and BBB permeability. Methods: Experiment 1 was to detect the effects of Eda.B in AIS patients. Serum samples of volunteers and AIS patients were collected before and 3 days after Edaravone Dexborneol treatment. Markers of NETs and occludin were detected by ELISA kit. Experiment 2 was to explore the effects of Eda.B on experimental stroke mice. Male C57BL/6 mice were subjected to distal middle cerebral artery occlusion (MCAO) and treated with vehicle, Eda.B, or DeoxyribonueleaseI (DNase I). After stroke, the neurobehavioral tests, infarct volume, and cerebral blood flow evaluation were determined. Leakage of Evans blue was to assess the integrity of BBB. Western blot, real-time quantitative polymerase chain reaction (RT-qPCR), and immunofluorescence were used to examine the expression of NETs and tight junction- (TJ-) associated proteins. Results: Eda.B significantly improved neurological function and cerebral blood flow but reduced infarct volume after experimental stroke. Eda.B downregulated level of NETs in serum samples of AIS patients and tissue samples of MCAO mouse cortex. Eda.B and DNase I alleviated BBB permeability by upregulating TJ-associated proteins. Conclusion: NETs are related to the early stage of AIS. Eda.B exerted neuroprotective effects and ameliorated BBB permeability after AIS.


Subject(s)
Brain Ischemia , Extracellular Traps , Ischemic Stroke , Stroke , Animals , Blood-Brain Barrier , Deoxyribonuclease I , Edaravone , Humans , Infarction, Middle Cerebral Artery , Male , Mice , Mice, Inbred C57BL , Permeability
10.
Int J Biol Sci ; 18(8): 3251-3265, 2022.
Article in English | MEDLINE | ID: mdl-35637960

ABSTRACT

Cancer is a severe disease with high morbidity and mortality globally. Thus, early detection is emerging as an important topic in modern oncology. Although the strategies for early detection have developed rapidly in recent decades, they remain challenging due to the subtle symptoms in the initial stage of the primary tumor. Currently, tumor biomarkers, imaging, and specific screening tests are widely used in various cancer types; however, each method has limitations. The harms are even overweight against the benefits in some cases. Therefore, early detection approaches should be improved urgently. Liquid biopsy, for now, is a convenient and non-invasive way compared to the traditional tissue biopsy in screening and early diagnosis. Circulating tumor cells (CTCs) are vital in liquid biopsy and play a central role in tumor dissemination and metastases. They have promising potential as cancer biomarkers in early detection. This review updates the knowledge of the biology of CTC; it also highlights the CTC enrichment technologies and their applications in the early detection of several human cancers.


Subject(s)
Neoplastic Cells, Circulating , Biomarkers, Tumor , Diagnostic Imaging , Early Detection of Cancer , Humans , Liquid Biopsy/methods , Neoplastic Cells, Circulating/pathology
11.
Med Sci Monit ; 25: 6181-6192, 2019 Aug 17.
Article in English | MEDLINE | ID: mdl-31421050

ABSTRACT

BACKGROUND Circular RNAs (circRNAs) are a kind of noncoding RNA with high cancer-specific expression, and great potential in regulating tumorigenesis. Among these, circRNA_100395 (circ_100395) has been reported to be downregulated in lung cancer, and participates in the process of tumor cell proliferation and metastasis. However, its expression and function in liver cancer remain unknown. MATERIAL AND METHODS Quantitative real-time polymerase chain reaction (RT-qPCR) was used to evaluate the expression level of circ_100395 and microRNAs-1228 (miR-1228) in liver cancer samples and the adjacent non-tumor tissues. Cell proliferation, apoptosis, invasion, migration, and epithelial-mesenchymal transition (EMT) pathway of circ_100395 upregulated cells were analyzed using a Cell Counting Kit-8 (CCK-8), flow cytometry, Transwell assay, and Western blot analysis. RESULTS We found that circ_100395 was downregulated in cancerous liver tissues relative to the adjacent normal tissues. The overexpression of circ_100395 was negatively associated with tumor differentiation, microvascular invasion, and portal vein tumor thrombosis. However, patients with higher circ_10039 expression tended to have better postoperative disease-free survival time. Moreover, upregulation of circ_100395 in liver cancer cells inhibited cell proliferation, induced apoptosis, then silenced the EMT pathway and reduced migration and invasion abilities, while this anti-tumor effect was significantly reversed by the downstream target, miR-1228. CONCLUSIONS circ_100395 appears to be a promising therapeutic target for liver cancer.


Subject(s)
Liver Neoplasms/genetics , Neoplasm Metastasis/genetics , RNA, Circular/genetics , Adult , Aged , Aged, 80 and over , Apoptosis/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Profiling , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Middle Aged , Neoplasm Invasiveness , RNA, Circular/metabolism , Real-Time Polymerase Chain Reaction/methods , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...