Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.271
Filter
1.
J Am Coll Emerg Physicians Open ; 5(3): e13190, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38827500

ABSTRACT

Objective: To analyze the risk factors associated with intubated critically ill patients in the emergency department (ED) and develop a prediction model by machine learning algorithms. Methods: This study was conducted in an academic tertiary hospital in Hangzhou, China. Critically ill patients admitted to the ED were retrospectively analyzed from May 2018 to July 2022. The demographic characteristics, distribution of organ dysfunction, parameters for different organs' examination, and status of mechanical ventilation were recorded. These patients were assigned to the intubation and non-intubation groups according to ventilation support. We used the eXtreme Gradient Boosting (XGBoost) algorithm to develop the prediction model and compared it with other algorithms, such as logistic regression, artificial neural network, and random forest. SHapley Additive exPlanations was used to analyze the risk factors of intubated critically ill patients in the ED. Results: Of 14,589 critically ill patients, 10,212 comprised the training group and 4377 comprised the test group; 2289 intubated patients were obtained from the electronic medical records. The mean age, mean scores of vital signs, parameters of different organs, and blood oxygen examination results differed significantly between the two groups (p < 0.05). The white blood cell count, international normalized ratio, respiratory rate, and pH are the top four risk factors for intubation in critically ill patients. Based on the risk factors in different predictive models, the XGBoost model showed the highest area under the receiver operating characteristic curve (0.84) for predicting ED intubation. Conclusions: For critically ill patients in the ED, the proposed model can predict potential intubation based on the risk factors in the clinically predictive model.

2.
Article in English | MEDLINE | ID: mdl-38870494

ABSTRACT

Objectives: This study aimed to explore the experiences and caregiving perspectives of mothers from low-income families who have children with asthma,and to establish a foundation for the development of tailored nursing strategies specifically designed for families facing similar circumstances. Method: A descriptive qualitative research method was employed. Fifteen mothers of asthmatic children from low-income families receiving treatment at the Respiratory Centre of Chongqing Children's Hospital were purposefully sampled from June to December 2021. Semi-structured interviews were conducted to gather data on their caregiving experiences, and thematic analysis was utilized to analyze the interview data. Results: The interviewees were 27-42 years old (SD=32.3 years), 33.3% were full-time mothers(A woman who quit work, in order to focus on taking care of the child and the family ), 53.3% had one child, 46.6% had a college degree or higher, and 100% had health insurance. Through in-depth interviews, four main themes and eight sub-themes were identified, including (a) insufficient knowledge about the disease, (b) anxiety and uncertainty, (c) insufficient social support system, and (d) insufficient resources for medical services. The first theme describes a weak willingness to learn and medication discontinuation at will. The second theme describes financial burden and psychological stress, the third theme describes lack of family support and low social participation, and the fourth theme describes insufficient health insurance support and unequal distribution of healthcare resources. Conclusion: Mothers from low-income families with asthmatic children face substantial psychological burdens and familial pressures. It is crucial for healthcare professionals to actively engage with and deepen their understanding of these mothers' caregiving experiences and psychological well-being. By doing so, positive coping strategies can be developed, promoting the physical and mental health of these mothers and improving asthma control in their children.

3.
Blood Purif ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38865971

ABSTRACT

BACKGROUND: Continuous renal replacement therapy (CRRT) is a primary form of renal support for patients with acute kidney injury in an intensive care unit. Making an accurate decision of discontinuation is crucial for the prognosis of patients. Previous research has mostly focused on the univariate and multivariate analysis of factors in CRRT, without the capacity to capture the complexity of the decision-making process. The present study thus developed a dynamic, interpretable decision model for CRRT discontinuation. METHODS: The study adopted a cohort of 1234 adult patients admitted to an intensive care unit in the MIMIC-IV database. We used the extreme gradient boosting (XGBoost) machine learning algorithm to construct dynamic discontinuation decision models across four time points. Shapley additive explanation (SHAP) analysis was conducted to show the contribution of an individual feature to the model output. RESULTS: Of the 1234 included patients with CRRT, 596 (48.3%) successfully discontinued CRRT. The dynamic prediction by the XGBoost model produced an area under the curve of 0.848 and accuracy, sensitivity, and specificity of 0.782, 0.786, and 0.776, respectively. The XGBoost model was thus far superior to other test models. SHAP demonstrated that the features that contributed most to the model results were the sequential organ failure assessment score, serum lactate level, and 24-hour urine output. CONCLUSIONS: Dynamic decision models supported by machine learning are capable of dealing with complex factors in CRRT and effectively predicting the outcome of discontinuation.

4.
Article in English | MEDLINE | ID: mdl-38866432

ABSTRACT

BACKGROUND AND PURPOSE: Symptoms of normal pressure hydrocephalus (NPH) are sometimes refractory to shunt placement, with limited ability to predict improvement for individual patients. We evaluated an MRI-based artificial intelligence method to predict post-shunt NPH symptom improvement. MATERIALS AND METHODS: NPH patients who underwent magnetic resonance imaging (MRI) prior to shunt placement at a single center (2014-2021) were identified. Twelve-month post-shunt improvement in modified Rankin Scale (mRS), incontinence, gait, and cognition were retrospectively abstracted from clinical documentation. 3D deep residual neural networks were built on skull stripped T2-weighted and fluid attenuated inversion recovery (FLAIR) images. Predictions based on both sequences were fused by additional network layers. Patients from 2014-2019 were used for parameter optimization, while those from 2020-2021 were used for testing. Models were validated on an external validation dataset from a second institution (n=33). RESULTS: Of 249 patients, n=201 and n=185 were included in the T2-based and FLAIR-based models according to imaging availability. The combination of T2-weighted and FLAIR sequences offered the best performance in mRS and gait improvement predictions relative to models trained on imaging acquired using only one sequence, with AUROC values of 0.7395 [0.5765-0.9024] for mRS and 0.8816 [0.8030-0.9602] for gait. For urinary incontinence and cognition, combined model performances on predicting outcomes were similar to FLAIR-only performance, with AUROC values of 0.7874 [0.6845-0.8903] and 0.7230 [0.5600-0.8859]. CONCLUSIONS: Application of a combined algorithm using both T2-weighted and FLAIR sequences offered the best image-based prediction of post-shunt symptom improvement, particularly for gait and overall function in terms of mRS. ABBREVIATIONS: NPH = normal pressure hydrocephalus; iNPH = idiopathic NPH; sNPH = secondary NPH; AI = artificial intelligence; ML = machine learning; CSF = cerebrospinal fluid; AUROC = area under the receiver operating characteristic; FLAIR = fluid attenuated inversion recovery; BMI = body mass index; CCI = Charlson Comorbidity Index; SD = standard deviation; IQR = interquartile range.

5.
J Ethnopharmacol ; 333: 118438, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38848972

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hyperlipidemia as a major health issue has attracted much public attention. As a geographical indication product of China, Liupao tea (LPT) is a typical representative of traditional Chinese dark tea that has shown good potential in regulating glucose and lipid metabolism. LPT has important medicinal value in hyperlipidemia prevention. However, the active ingredients and metabolic mechanisms by which LPT alleviates hyperlipidemia remain unclear. AIM OF THE STUDY: This study aimed to systematically investigate the metabolic mechanisms and active ingredients of LPT extract in alleviating hyperlipidemia. MATERIALS AND METHODS: Firstly, we developed a mouse model of hyperlipidemia to study the pharmacodynamics of LPT. Subsequently, network pharmacology and molecular docking were performed to predict the potential key active ingredients and core targets of LPT against hyperlipidemia. LC-MS/MS was used to validate the identity of key active ingredients in LPT with chemical standards. Finally, the effect and metabolic mechanisms of LPT extract in alleviating hyperlipidemia were investigated by integrating metabolomic, lipidomic, and gut microbiome analyses. RESULTS: Results showed that LPT extract effectively improved hyperlipidemia by suppressing weight gain, remedying dysregulation of glucose and lipid metabolism, and reducing hepatic damage. Network pharmacology analysis and molecular docking suggested that four potential active ingredients and seven potential core targets were closely associated with roles for hyperlipidemia treatment. Ellagic acid, catechin, and naringenin were considered to be the key active ingredients of LPT alleviating hyperlipidemia. Additionally, LPT extract modulated the mRNA expression levels of Fxr, Cyp7a1, Cyp8b1, and Cyp27a1 associated with bile acid (BA) metabolism, mitigated the disturbances of BA and glycerophospholipid (GP) metabolism in hyperlipidemia mice. Combining fecal microbiota transplantation and correlation analysis, LPT extract effectively improved species diversity and abundance of gut microbiota, particularly the BA and GP metabolism-related gut microbiota, in the hyperlipidemia mice. CONCLUSIONS: LPT extract ameliorated hyperlipidemia by modulating GP and BA metabolism by regulating Lactobacillus and Dubosiella, thereby alleviating hyperlipidemia. Three active ingredients of LPT served as the key factors in exerting an improvement on hyperlipidemia. These findings provide new insights into the active ingredients and metabolic mechanisms of LPT in improving hyperlipidemia, suggesting that LPT can be used to prevent and therapeutic hyperlipidemia.

6.
J Environ Manage ; 362: 121293, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38833923

ABSTRACT

Soil acidification induced by reactive nitrogen (N) inputs is a major environmental issue in grasslands, as it lowers the acid neutralizing capacity (ANC). The specific impacts of different N compound forms on ANC remain unclear. Grassland management practices like mowing and grazing can remove a considerable amount of soil N and other nutrients, potentially mitigating soil acidification by removing N from the ecosystem or aggravating it by removing base cations. However, empirical evidence regarding the joint effects of adding different forms of N compounds and mowing on ANC changes in different-sized soil aggregates is still lacking. This study aimed to address this knowledge gap by examining the effects of three N compounds (urea, ammonium nitrate, and ammonium sulfate) combined with mowing (mown vs. unmown) on soil ANC in different soil aggregate sizes (>2000 µm, 250-2000 µm, and <250 µm) through a 6-year field experiment in Inner Mongolia grasslands. We found that the average decline in soil ANC caused by ammonium sulfate (AS) addition (-78.9%) was much greater than that by urea (-25.0%) and ammonium nitrate (AN) (-52.1%) as compared to control. This decline was attributed to increased proton (H+) release from nitrification and the leaching of exchangeable Ca2+ and Mg2+. Mowing aggravated the adverse effects of urea and AN on ANC, primarily due to the reduction in soil organic matter (SOM) contents and the removal of exchangeable Ca2+, K+, and Na + via plant biomass harvest. This pattern was consistent across all aggregate fractions. The lack of variation in soil ANC among different soil aggregate fractions is likely due to the contrasting trend in the distribution of exchangeable Ca2+ and Mg2+. Specifically, the concentration of exchangeable Ca2+ increased with increasing aggregate size, while the opposite was true for that of exchangeable Mg2+. These findings underscore the importance of considering the forms of N compounds when assessing the declines of ANC induced by N inputs, which also calls for an urgent need to reduce N emissions to ensure the sustainable development of the meadow ecosystems.


Subject(s)
Grassland , Nitrogen , Soil , Soil/chemistry , Nitrogen/analysis , Nitrates/analysis , Ecosystem
7.
Ecotoxicol Environ Saf ; 281: 116611, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909393

ABSTRACT

Nitrophenols, a versatile intermediate, have been widely used in leather, medicine, chemical synthesis, and other fields. Because these components are widely applied, they can enter the environment through various routes, leading to many hazards and toxicities. There has been a recent surge in the development of simple, rapid, environmentally friendly, and effective techniques for determining these environmental pollutants. This review provides a comprehensive overview of the latest research progress on the pretreatment and analysis methods of nitrophenols since 2017, with a focus on environmental samples. Pretreatment methods include liquid-liquid extraction, solid-phase extraction, dispersive extraction, and microextraction methods. Analysis methods mainly include liquid chromatography-based methods, gas chromatography-based methods, supercritical fluid chromatography. In addition, this review also discusses and compares the advantages/disadvantages and development prospects of different pretreatment and analysis methods to provide a reference for further research.

8.
Pharmacotherapy ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899757

ABSTRACT

BACKGROUND: To compare the effects of proton pump inhibitor (PPI) and histamine-2 receptor antagonist (H2RA) use on the occurrence of acute kidney injury (AKI) in septic patients at high risk for developing stress ulcers. METHODS: Using the Medical Information Mart for Intensive Care IV version 2.2 database, septic patients with high-risk factors for stress ulcers (i.e., shock, coagulopathy, invasive mechanical ventilation, or chronic liver diseases) were included. Exposures included PPIs and H2RAs within 24 h of intensive care unit (ICU) admission or prior to ICU admission. The primary end point was severe sepsis-associated AKI as defined by the Kidney Disease Improving Global Outcomes criteria stage 3 (KDIGO-3). Propensity score matching (PSM) was performed to balance baseline characteristics. Multivariable Cox proportional hazards regression was used to estimate the effect size. RESULTS: 4731 PPI users and 4903 H2RA users were included. After PSM, there were 1785 pairs exposed to PPIs and H2RAs. In the PSM cohort, the cumulative incident KDIGO-3 rate was higher in the PPI group than in the H2RA group (log-rank test, p = 0.009). Regression analyses showed that PPI exposure [adjusted hazard ratio 1.32, 95% confidence interval (CI) 1.11-1.58, p = 0.002] was associated with incident KDIGO-3 compared with H2RA use. This association remained consistent in sensitivity analyses. Additionally, the PPI group had a higher need for kidney replacement therapy compared with the H2RA group (3.6% vs. 2.1%, P = 0.012). CONCLUSIONS: Among septic patients at high risk for developing stress ulcers, PPI exposure was associated with incident KDIGO-3 AKI compared with H2RA use.

9.
J Mater Chem B ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38895858

ABSTRACT

Carrier-free nanomedicines offer advantages of extremely high drug loading capacity (>80%), minimal non-drug constituent burden, and facile preparation processes. Numerous studies have proved that multimodal cancer therapy can enhance chemotherapy efficiency and mitigate multi-drug resistance (MDR) through synergistic therapeutic effects. Upon penetration into the tumor matrix, nanoparticles (NPs) are anticipated to be uptaken by cancer cells, primarily through clathrin-meditated endocytosis pathways, leading to their accumulation in endosomes/lysosomes within cells. However, endo/lysosomes exhibit a highly degradative environment for organic NPs and drug molecules, often resulting in treatment failure. Hence, this study designed a lysosomal escape mechanism with carrier-free nanomedicine, combining the chemotherapeutic drug, curcumin (Cur), and the photothermal/photodynamic therapeutic drug, indocyanine green (ICG), for synergistic cancer treatment (ICG-Cur NPs) via a facile preparation process. To facilitate endo/lysosomal escape, ICG-Cur NPs were modified with metal-phenolic networks (MPNs) of different thickness. The results indicate that a thick MPN coating promotes rapid endo/lysosomal escape of ICG-Cur NPs within 4 h and enhances the photothermal conversion efficiency of ICG-Cur NPs by 55.8%, significantly improving anticancer efficacy in both chemo- and photo-therapies within 3D solid tumor models. This finding underscores the critical role of endo/lysosomal escape capacity in carrier-free drug NPs for therapeutic outcomes and offers a facile solution to achieve it.

10.
Aging (Albany NY) ; 16(11): 10142-10164, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38870259

ABSTRACT

HCC, also known as hepatocellular carcinoma, is a frequently occurring form of cancer with an unfavorable prognosis. This research constructed a prognostic signature related to ubiquitination and investigated its correlation with the response to immunotherapy in HCC. The Molecular Signatures Database provided a compilation of genes associated with ubiquitination. A gene signature related to ubiquitination was obtained through Cox regression using the Least Absolute Shrinkage and Selection Operator method. The genetic factors CPY26B1, MCM10, SPINK4, and TRIM54 notably impacted the outcomes of HCC. The patients were divided into two groups: one group had a high risk of poor survival while the other had a low risk but a greater chance of controlling HCC progression. Both univariate and multivariate analyses using Cox regression found the risk score to be an independent predictor of HCC prognosis. Gene set enrichment analysis (GSEA) indicated enrichment in cell cycle and cancer-related microRNAs in high-risk groups. The tumor microenvironment (TME), response to immunotherapy, and effectiveness of chemotherapy medications positively correlated with the risk score. In the high-risk group, erlotinib showed higher IC50 values compared to the low-risk group which exhibited higher IC50 values for VX-11e, AKT inhibitor VIII, AT-7519, BMS345541, Bortezomib, CP466722, FMK, and JNK-9L. The results of RT-qPCR revealed that the expression of four UEGs was higher in tumor tissue as compared to normal tissue. Based on the genes that were expressed differently and associated with ubiquitination-related tumor categorization, we have developed a pattern of four genes and a strong nomogram that can predict the prognosis of HCC, which could be useful in identifying and managing HCC.


Subject(s)
Carcinoma, Hepatocellular , Immunotherapy , Liver Neoplasms , Ubiquitination , Humans , Liver Neoplasms/genetics , Liver Neoplasms/immunology , Liver Neoplasms/therapy , Ubiquitination/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/therapy , Prognosis , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Male , Female , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Transcriptome
11.
Plant Cell Environ ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38725360

ABSTRACT

Terrestrial water fluxes are substantially mediated by vegetation, while the distribution, growth, health, and mortality of plants are strongly influenced by the availability of water. These interactions, playing out across multiple spatial and temporal scales, link the disciplines of plant ecophysiology and ecohydrology. Despite this connection, the disciplines have provided complementary, but largely independent, perspectives on the soil-plant-atmosphere continuum since their crystallization as modern scientific disciplines in the late 20th century. This review traces the development of the two disciplines, from their respective origins in engineering and ecology, their largely independent growth and maturation, and the eventual development of common conceptual and quantitative frameworks. This common ground has allowed explicit coupling of the disciplines to better understand plant function. Case studies both illuminate the limitations of the disciplines working in isolation, and reveal the exciting possibilities created by consilience between the disciplines. The histories of the two disciplines suggest opportunities for new advances will arise from sharing methodologies, working across multiple levels of complexity, and leveraging new observational technologies. Practically, these exchanges can be supported by creating shared scientific spaces. This review argues that consilience and collaboration are essential for robust and evidence-based predictions and policy responses under global change.

12.
J Biomed Sci ; 31(1): 55, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38802791

ABSTRACT

BACKGROUND: Radioresistance is a key clinical constraint on the efficacy of radiotherapy in lung cancer patients. REV1 DNA directed polymerase (REV1) plays an important role in repairing DNA damage and maintaining genomic stability. However, its role in the resistance to radiotherapy in lung cancer is not clear. This study aims to clarify the role of REV1 in lung cancer radioresistance, identify the intrinsic mechanisms involved, and provide a theoretical basis for the clinical translation of this new target for lung cancer treatment. METHODS: The effect of targeting REV1 on the radiosensitivity was verified by in vivo and in vitro experiments. RNA sequencing (RNA-seq) combined with nontargeted metabolomics analysis was used to explore the downstream targets of REV1. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to quantify the content of specific amino acids. The coimmunoprecipitation (co-IP) and GST pull-down assays were used to validate the interaction between proteins. A ubiquitination library screening system was constructed to investigate the regulatory proteins upstream of REV1. RESULTS: Targeting REV1 could enhance the radiosensitivity in vivo, while this effect was not obvious in vitro. RNA sequencing combined with nontargeted metabolomics revealed that the difference result was related to metabolism, and that the expression of glycine, serine, and threonine (Gly/Ser/Thr) metabolism signaling pathways was downregulated following REV1 knockdown. LC-MS/MS demonstrated that REV1 knockdown results in reduced levels of these three amino acids and that cystathionine γ-lyase (CTH) was the key to its function. REV1 enhances the interaction of CTH with the E3 ubiquitin ligase Rad18 and promotes ubiquitination degradation of CTH by Rad18. Screening of the ubiquitination compound library revealed that the ubiquitin-specific peptidase 9 X-linked (USP9X) is the upstream regulatory protein of REV1 by the ubiquitin-proteasome system, which remodels the intracellular Gly/Ser/Thr metabolism. CONCLUSION: USP9X mediates the deubiquitination of REV1, and aberrantly expressed REV1 acts as a scaffolding protein to assist Rad18 in interacting with CTH, promoting the ubiquitination and degradation of CTH and inducing remodeling of the Gly/Ser/Thr metabolism, which leads to radioresistance. A novel inhibitor of REV1, JH-RE-06, was shown to enhance lung cancer cell radiosensitivity, with good prospects for clinical translation.


Subject(s)
Lung Neoplasms , Nucleotidyltransferases , Radiation Tolerance , Ubiquitin-Protein Ligases , Ubiquitination , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/genetics , Cell Line, Tumor , Mice , Animals , DNA-Directed DNA Polymerase
13.
Viruses ; 16(5)2024 04 26.
Article in English | MEDLINE | ID: mdl-38793564

ABSTRACT

Porcine reproductive and respiratory syndrome virus (PRRSV) is a pathogen that causes severe abortions in sows and high piglet mortality, resulting in huge economic losses to the pig industry worldwide. The emerging and novel PRRSV isolates are clinically and biologically important, as there are likely recombination and pathogenic differences among PRRSV genomes. Furthermore, the NADC34-like strain has become a major epidemic strain in some parts of China, but the characterization and pathogenicity of the latest strain in Inner Mongolia have not been reported in detail. In this study, an NADC34-like strain (CHNMGKL1-2304) from Tongliao City, Inner Mongolia was successfully isolated and characterized, and confirmed the pathogenicity in pigs. The phylogenetic tree showed that this strain belonged to sublineage 1.5 and had high homology with the strain JS2021NADC34. There is no recombination between CHNMGKL1-2304 and any other domestic strains. Animal experiments show that the CHNMGKL1-2304 strain is moderately virulent to piglets, which show persistent fever, weight loss and high morbidity but no mortality. The presence of PRRSV nucleic acids was detected in both blood, tissues, nasal and fecal swabs. In addition, obvious pathological changes and positive signals were observed in lung, lymph node, liver and spleen tissues when subjected to hematoxylin-eosin (HE) staining and immunohistochemistry (IHC). This report can provide a basis for epidemiological investigations and subsequent studies of PRRSV.


Subject(s)
Genome, Viral , Phylogeny , Porcine Reproductive and Respiratory Syndrome , Porcine respiratory and reproductive syndrome virus , Animals , Swine , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/pathogenicity , Porcine respiratory and reproductive syndrome virus/isolation & purification , Porcine respiratory and reproductive syndrome virus/classification , China , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/pathology , Virulence , Evolution, Molecular
14.
Nutr Metab (Lond) ; 21(1): 28, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796446

ABSTRACT

Metabolic syndrome (MetS) is a cluster of clinical syndromes that is closely associated with an elevated risk of developing atherosclerotic cardiovascular disease. In a series of animal experiments and clinical trials, crocus sativus and its component crocin have demonstrated promising hypoglycemic effects. However, there is currently insufficient evidence regarding their impact on cardiometabolic parameters. Our study aimed to assess the impact of Crocus sativus and crocin on glycemic control in individuals with metabolic syndrome and associated disorders, as well as their potential effects on improving cardiometabolic parameters. We searched Cochrane Library, PubMed, Embase, and Web of Science databases to ascertain the pertinent randomized controlled trials (RCTs) until December 30, 2023. Q-test and I2 statistics were utilized to evaluate heterogeneity among the included studies. Data were merged using a random-effects model and presented as (WMD) with a 95% confidence interval (CI). The current comprehensive review and meta-analysis, encompassing 13 RCTs involving a total of 840 patients diagnosed with metabolic syndrome and associated disorders, demonstrates that Crocus sativus was superior to placebo on Hemoglobin A1c(HbA1c) (WMD: -0.31;95% CI [-0.44,-0.19]. P = 0.002) and systolic blood pressure(SBP) (WMD:-7.49;95% CI [-11.67,-3.30]. P = 0.99) respectively. Moreover, Crocus sativus improved fasting blood glucose (FBG) (WMD:-7.25;95% CI [-11.82, -2.57]. P = 0.002) when used crocin and on other chronic diseases. Crocus sativus reduced the total cholesterol (TC) among the metabolic syndromepatients (WMD:-13.64;95%CI [-26.26, -1.03]. P = 0.03). We demonstrated that Crocus sativus exerts beneficial effects on glycemic control and cardiometabolic parameters in individuals with metabolic syndrome and related disorders.

15.
Chembiochem ; : e202400229, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700379

ABSTRACT

Photodynamic therapy (PDT) is a newly emerged strategy for disease treatment. One challenge of the application of PDT drugs is the side-effect caused by the non-specificity of the photosensitive molecules. Most of the photosensitizers may invade not only the pathogenic cells but also the normal cells. In recent, people tried to use special cargoes to deliver the drugs into target cells. DNA nanoflowers (NFs) are a kind of newly-emerged nanomaterial which constructed through DNA rolling cycle amplification (RCA) reaction. It is reported that the DNA NFs were suitable materials which have been widely applied as nanocargos for drug delivery in cancer chemotherapeutic treatment. In this paper, we have introduced a new multifunctional DNA NF which could be prepared through an one-pot RCA reaction. This proposed DNA NF contained a versatile AS1411 G-quadruplex moiety, which plays key roles not only for specific recognition of cancer cells but also for near-infrared ray based photodynamic therapy when conjugating with a special porphyrin molecule. We demonstrated that the DNA NF showed good selectivity toward cancer cells, leading to highly efficient photo-induced cytotoxicity. Moreover, the in vivo experiment results suggested this DNA NF is a promising nanomaterial for clinical PDT.

16.
Gene ; 927: 148595, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795857

ABSTRACT

Beef and dairy products are rich in protein and amino acids, making them highly nutritious for human consumption. The increasing use of gene editing technology in agriculture has paved the way for genetic improvement in cattle breeding via the development of the CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) system. Gene sequences are artificially altered and employed in the pursuit of improving bovine breeding research through targeted knockout, knock-in, substitution, and mutation methods. This review offers a comprehensive analysis of the advancements in gene editing technology and its diverse applications in enhancing both quantitative and qualitative traits across livestock. These applications encompass areas such as meat quality, milk quality, fertility, disease resistance, environmental adaptability, sex control, horn development, and coat colour. Furthermore, the review considers prospective ideas and insights that may be employed to refine breeding traits, enhance editing efficiency, and navigate the ethical considerations associated with these advancements. The review's focus on improving the quality of beef and milk is intended to enhance the economic viability of these products. Furthermore, it constitutes a valuable resource for scholars and researchers engaged in the fields of cattle genetic improvement and breeding.

17.
Environ Sci Process Impacts ; 26(6): 1077-1089, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38742391

ABSTRACT

Vertical observations of atmospheric pollutants play crucial roles in a comprehensive understanding of the distribution characteristics and transport of atmospheric pollutants. A hexacopter uncrewed aerial vehicle equipped with miniature monitors was employed to measure the vertical distribution of atmospheric pollutants within a height of 1000 m at a rural site in Xi'an, China, in 2021. The concentrations of carbon monoxide (CO) and particulate matter (PM) showed generally decreasing trends with increasing height. The ozone (O3) concentration showed a general increasing trend with height followed by a gradual decreasing trend. Vertical decrements of PM2.5 and CO from 0 to 1000 m were significantly (p < 0.05) lower on observation days during summer (14.0 ± 8.1 µg m-3 and 8.7 ± 6.6 ppb, respectively), compared with those in winter (78.3 ± 14.1 µg m-3 and 34.8 ± 17.3 ppb, respectively). The horizontal transport of PM and CO mostly occurred in the morning and at night during winter observations at an altitude of 400-500 m. During the winter haze, the PM and CO profile concentrations below 500 m increased substantially with the decrease in the height of the thermal inversion layer. Vertical O3 transportation was observed in the afternoon and evening during summer, and a ∼37.7% (11.6 ppb) increase in ground-level O3 was observed in relation to vertical transport from the upper atmosphere. The results provide insights into the vertical distribution and transport of atmospheric pollutants in rural areas near cities.


Subject(s)
Air Pollutants , Air Pollution , Carbon Monoxide , Environmental Monitoring , Ozone , Particulate Matter , Air Pollutants/analysis , China , Environmental Monitoring/methods , Particulate Matter/analysis , Air Pollution/statistics & numerical data , Ozone/analysis , Carbon Monoxide/analysis , Seasons , Atmosphere/chemistry , Aircraft
18.
mBio ; 15(6): e0064024, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38727246

ABSTRACT

Interleukin-18 binding protein (IL-18BP), a natural regulator molecule of the pro-inflammatory cytokine interleukin-18 (IL-18), plays an important role in regulating the expression of the cellular immunity factor interferon-γ (IFN-γ). In a previous RNA-seq analysis of porcine alveolar macrophages (PAM) infected with the TIM and TJ strains of porcine reproductive and respiratory syndrome virus (PRRSV), we unexpectedly found that the mRNA expression of porcine interleukin 18-binding protein (pIL-18BP) in PAM cells infected with the TJM strain was significantly higher than that infected with the TJ strain. Studies have shown that human interleukin-18 binding protein (hIL-18bp) plays an important role in regulating cellular immunity in the course of the disease. However, there is a research gap on pIL-18BP. At the same time, PRRSV infection in pigs triggers weak cellular immune response problems. To explore the expression and the role of pIL-18BP in the cellular immune response induced by PRRSV, we strived to acquire the pIL-18BP gene from PAM or peripheral blood mononuclear cell (PBMC) with RT-PCR and sequencing. Furthermore, pIL-18BP and pIL-18 were both expressed prokaryotically and eukaryotically. The colocalization and interaction based on recombinant pIL-18BP and pIL-18 on cells were confirmed in vitro. Finally, the expression of pIL-18BP, pIL-18, and pIFN-γ was explored in pigs with different PRRSV infection states to interpret the biological function of pIL-18BP in vivo. The results showed there were five shear mutants of pIL-18BP. The mutant with the longest coding region was selected for subsequent functional validation. First, it was demonstrated that TJM-induced pIL-18BP mRNA expression was higher than that of TJ. A direct interaction between pIL-18BP and pIL-18 was confirmed through fluorescence colocalization, bimolecular fluorescent complimentary (BIFC), and co-immunoprecipitation (CO-IP). pIL-18BP also can regulate pIFN-γ mRNA expression. Finally, the expression of pIL-18BP, pIL-18, and pIFN-γ was explored in different PRRSV infection states. Surprisingly, both mRNA and protein expression of pIL-18 were suppressed. These findings fill the gap in understanding the roles played by pIL-18BP in PRRSV infection and provide a foundation for further research.IMPORTANCEPRRSV-infected pigs elicit a weak cellular immune response and the mechanisms of cellular immune regulation induced by PRRSV have not yet been fully elucidated. In this study, we investigated the role of pIL-18BP in PRRSV-induced immune response referring to the regulation of human IL-18BP to human interferon-gamma (hIFN-γ). This is expected to be used as a method to enhance the cellular immune response induced by the PRRSV vaccine. Here, we mined five transcripts of the pIL-18BP gene and demonstrated that it interacts with pIL-18 and regulates pIFN-γ mRNA expression. Surprisingly, we also found that both mRNA and protein expression of pIL-18 were suppressed under different PRRSV strains of infection status. These results have led to a renewed understanding of the roles of pIL-18BP and pIL-18 in cellular immunity induced by PRRSV infection, which has important implications for the prevention and control of PRRS.


Subject(s)
Porcine respiratory and reproductive syndrome virus , RNA, Messenger , Animals , Swine , Porcine respiratory and reproductive syndrome virus/genetics , Porcine respiratory and reproductive syndrome virus/immunology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , Porcine Reproductive and Respiratory Syndrome/immunology , Porcine Reproductive and Respiratory Syndrome/genetics , Porcine Reproductive and Respiratory Syndrome/metabolism , Macrophages, Alveolar/virology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/metabolism , Host-Pathogen Interactions/genetics , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interferon-gamma/immunology , Transcription, Genetic
19.
Pharmacol Res ; 205: 107236, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797358

ABSTRACT

The rapid antidepressant effects of ketamine depend on the N-methyl-D-aspartate (NMDA) receptor containing 2B subunit (NR2B), whose function is influenced by its phosphorylated regulation and distribution within and outside synapses. It remains unclear if ketamine's rapid onset of antidepressant effects relies on the dynamic phosphorylated regulation of NR2B within and outside synapses. Here, we show that ketamine rapidlyalleviated depression-like behaviors and normalized abnormal expression of pTyr1472NR2B and striatal-enriched protein tyrosine phosphatase (STEP) 61 within and outside synapses in the medial prefrontal cortex (mPFC) induced by chronic unpredictable stress (CUS) and conditional knockdown of STEP 61, a key phosphatase of NR2B, within 1 hour after administration Together, our results delineate the rapid initiation of ketamine's antidepressant effects results from the restoration of NR2B phosphorylation homeostasis within and outside synapses. The dynamic regulation of phosphorylation of NR2B provides a new perspective for developing new antidepressant strategies.


Subject(s)
Antidepressive Agents , Depression , Ketamine , Mice, Inbred C57BL , Prefrontal Cortex , Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/metabolism , Ketamine/pharmacology , Animals , Phosphorylation/drug effects , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Male , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Depression/drug therapy , Depression/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Tyrosine/metabolism , Mice , Stress, Psychological/metabolism , Stress, Psychological/drug therapy , Synapses/drug effects , Synapses/metabolism , Behavior, Animal/drug effects
20.
J Pharm Anal ; 14(4): 100899, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38634061

ABSTRACT

Tyrosine kinase inhibitors (TKIs) have emerged as the first-line small molecule drugs in many cancer therapies, exerting their effects by impeding aberrant cell growth and proliferation through the modulation of tyrosine kinase-mediated signaling pathways. However, there exists a substantial inter-individual variability in the concentrations of certain TKIs and their metabolites, which may render patients with compromised immune function susceptible to diverse infections despite receiving theoretically efficacious anticancer treatments, alongside other potential side effects or adverse reactions. Therefore, an urgent need exists for an up-to-date review concerning the biological matrices relevant to bioanalysis and the sampling methods, clinical pharmacokinetics, and therapeutic drug monitoring of different TKIs. This paper provides a comprehensive overview of the advancements in pretreatment methods, such as protein precipitation (PPT), liquid-liquid extraction (LLE), solid-phase extraction (SPE), micro-SPE (µ-SPE), magnetic SPE (MSPE), and vortex-assisted dispersive SPE (VA-DSPE) achieved since 2017. It also highlights the latest analysis techniques such as newly developed high performance liquid chromatography (HPLC) and high-resolution mass spectrometry (HRMS) methods, capillary electrophoresis (CE), gas chromatography (GC), supercritical fluid chromatography (SFC) procedures, surface plasmon resonance (SPR) assays as well as novel nanoprobes-based biosensing techniques. In addition, a comparison is made between the advantages and disadvantages of different approaches while presenting critical challenges and prospects in pharmacokinetic studies and therapeutic drug monitoring.

SELECTION OF CITATIONS
SEARCH DETAIL
...