Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-449680

ABSTRACT

SARS-CoV-2 infection-induced hyper-inflammation links to the acute lung injury and COVID-19 severity. Identifying the primary mediators that initiate the uncontrolled hypercytokinemia is essential for treatments. Mast cells (MCs) are strategically located at the mucosa and beneficially or detrimentally regulate immune inflammations. Here we showed that SARS-CoV-2-triggeed MC degranulation initiated alveolar epithelial inflammation and lung injury. SARS-CoV-2 challenge induced MC degranulation in ACE-2 humanized mice and rhesus macaques, and a rapid MC degranulation could be recapitulated with Spike-RBD binding to ACE2 in cells; MC degranulation alterred various signaling pathways in alveolar epithelial cells, particularly, led to the production of pro-inflammatory factors and consequential disruption of tight junctions. Importantly, the administration of clinical MC stabilizers for blocking degranulation dampened SARS-CoV-2-induced production of pro-inflammatory factors and prevented lung injury. These findings uncover a novel mechanism for SARS-CoV-2 initiating lung inflammation, and suggest an off-label use of MC stabilizer as immunomodulators for COVID-19 treatments. Graphical abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=135 SRC="FIGDIR/small/449680v1_ufig1.gif" ALT="Figure 1"> View larger version (29K): org.highwire.dtl.DTLVardef@899996org.highwire.dtl.DTLVardef@1c26c0eorg.highwire.dtl.DTLVardef@1442cdcorg.highwire.dtl.DTLVardef@dd4204_HPS_FORMAT_FIGEXP M_FIG C_FIG In BriefSARS-CoV-2 triggers an immediate mast cell (MC) degranulation, which initiates the alveolar epithelial inflammation and disrupts the tight junction. MC stabilizers that block degranulation reduce virus-induced lung inflammation and injury. HighlightsO_LIThe binding of RBD of Spike protein of SARS-CoV-2-to ACE2 receptor protein triggers an immediate MC degranulation C_LIO_LIMC degranulation induces transcriptomic changes include an upregulated inflammatory signaling and a downregulated cell-junction signaling C_LIO_LIMC degranulation leads to alveolar epithelial inflammation and disruption of tight junctions C_LIO_LIMC stabilizer that inhibits degranulation reduces SARS-CoV-2-induced lung inflammation and injury in vivo C_LI

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-440104

ABSTRACT

In the search for treatment schemes of COVID-19, we start by examining the general weakness of coronaviruses and then identify approved drugs attacking that weakness. The approach, if successful, should identify drugs with a specific mechanism that is at least as effective as the best drugs proposed and are ready for clinical trials. All coronaviruses translate their non-structural proteins ([~]16) in concatenation, resulting in a very large super-protein. Homo-harringtonine (HHT), which has been approved for the treatment of leukemia, blocks protein elongation very effectively. Hence, HHT can repress the replication of many coronaviruses at the nano-molar concentration. In two mouse models, HHT clears SARS-CoV-2 in 3 days, especially by nasal dripping of 40 ug per day. We also use dogs to confirm the safety of HHT delivered by nebulization. The nebulization scheme could be ready for large-scale applications at the onset of the next epidemics. For the current COVID-19, a clinical trial has been approved by the Ditan hospital of Beijing but could not be implemented for want of patients. The protocol is available to qualified medical facilities.

SELECTION OF CITATIONS
SEARCH DETAIL
...