Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biotheor ; 57(3): 309-20, 2009 Sep.
Article in English | MEDLINE | ID: mdl-18953656

ABSTRACT

A simple numerical procedure is presented for the problem of estimating the parameters of models for the distribution of eggs oviposited in a host. The modelling is extended to incorporate both host density and time dependence to produce a remarkably parsimonious structure with only seven parameters to describe a data set of over 3,000 observations. This is further refined using a mixed model to accommodate several large outliers. Both models show that the level of superparasitism declines with increasing host density, and the rate declines over time. It is proposed that the differing behaviours represented by the mixed model may reflect a balance between behavioural strategies of different selective benefit.


Subject(s)
Host-Parasite Interactions/physiology , Hymenoptera/physiology , Models, Biological , Oviposition/physiology , Animals , Aphids/physiology , Chrysanthemum/parasitology , Female , Larva , Markov Chains , Population Density
2.
Exp Appl Acarol ; 33(1-2): 31-44, 2004.
Article in English | MEDLINE | ID: mdl-15285136

ABSTRACT

The interplay between dietary specialism, the tolerance of food and water stress and level of cannibalism is likely to be important in determining the outcome of biological control using inundative releases of multiple natural enemies, such as phytoseiid mites in protected crops. The dietary specialist, Phytoseiulus persimilis, with a short immature development time (4-5 days) when plentiful food was available had a low ability to survive without food (5 days), even with access to water. The dietary generalists, Neoseiulus californicus, N. cucumeris and lphiseius degenerans, had longer immature development times (by up to 2 days) than P. persimilis. Survival ability differed amongst the generalist species when they were starved but provided with constant access to water. Both N. californicus and N. cucumeris survived the longest (8-10 days) and I. degenerans survived the shortest period (4 days). No negative intra-specific interaction between immatures was observed with P. persimilis when food was available and in the absence of food this species tended to starve rather than act cannibalistically. Both N. californicus and N. cucumeris showed a low degree of cannibalism between immatures, either when food was available, or when starved but given access to water. Even when food was available survival of I. degenerans fell by 30% in 4 days and remained at 60-70% for 3 further days; survival continued to decline rapidly when they were starved but provided with water. This indicates that immatures of I. degenerans could either feed on dead conspecifics or that they were capable of a degree of cannibalism. Adult females of P. persimilis did not feed on conspecific eggs even when deprived of food but provided with water. Adult female N. californicus and N. cucumeris did feed on conspecific eggs but at a low level (<1 egg per day), which occurred only after 48 h starvation. Although egg cannibalism occurred more consistently with adult female I. degenerans than with other mite species it was at a low level (<1 egg per day). If the tendency to cannibalism, not just of eggs but with more susceptible life stages such as larvae, is reduced when water is available freely this could be important in determining the interactions that occur under natural conditions.


Subject(s)
Cannibalism , Mites/physiology , Animals , Female , Food Deprivation , Pest Control, Biological , Water Deprivation
3.
Exp Appl Acarol ; 32(1-2): 1-13, 2004.
Article in English | MEDLINE | ID: mdl-15139268

ABSTRACT

The effect of relative humidity on egg hatch success for Iphiseius degenerans, Neoseiulus californicus and N. cucumeris was described by a binomial model with a parallel slope. The shape of the response differed for Phytoseiulus persimilis and a model with separate parameters gave a significantly better fit. Fitted response curves showed that I. degenerans, N. cucumeris, N. californicus and P. persimilis were ranked by decreasing tolerance to low humidity, with egg mortalities of < 0.5, 3, 12 and 16% respectively at 75-80% RH at 20 degrees C. Egg stage duration for I. degenerans and N. cucumeris was unaffected over the range 60-82% RH. For N. californicus and P. persimilis egg duration was significantly longer at 60 and 70% than for either 82 or 90% RH. No effect of relative humidity was found on the mean life span of adult females when food was available continuously to the mites. N. californicus lived significantly longer (58 days after the first egg was laid) than the other species. No significant difference was observed in mean life span between adult females of I. degenerans and N. cucumeris (25 and 28 days respectively). The mean life span of adult female P. persimilis (19 days) was significantly shorter than the other species. In the absence of both food and water, the survival of adult female mites was reduced to 2-4 days. Survival time was at least doubled when free water was available in the absence of food. Mean survival of adult female mites with water but without food was 10 days for N. cucumeris, 18 days for N. californicus, 6 days for P. persimilis and 4 days for I. degenerans. Survival of adult female N. cucumeris and N. californicus was increased significantly, to 20 and 22 days respectively, when fungal hyphae were present along with water but in the absence of other food.


Subject(s)
Crops, Agricultural/parasitology , Mites/growth & development , Animals , Female , Humidity , Pest Control, Biological , Survival Analysis
4.
Exp Appl Acarol ; 31(1-2): 37-49, 2003.
Article in English | MEDLINE | ID: mdl-14756399

ABSTRACT

Environmental variables, such as temperature, are important in determining the efficiency of biological control in ornamental crops. This paper examines the effect of temperature on the functional response of adult female Phytoseiulus persimilis to eggs of the spider mite, Tetranychus urticae. The functional response was determined using a new functional response assay technique with plant stems as an arena, rather than leaf discs. The use of plant stems allows the influence that plant structure has on predation to be incorporated into the assay. Control assays were also used (without predators) to estimate natural losses of prey. The data were analysed using a binomial model, with the use of Abbot's formula to correct for the losses in the controls. A combined equation to describe the effect of temperature and prey density on the predation rate of Phytoseiulus persimilis was derived. The results showed that more prey are eaten as the temperature increases from 15 degrees C to 25 degrees C, but the number of prey eaten then declines at 30 degrees C, although not to the levels seen at 20 degrees C. The implication of these results for biological control in ornamental crops, where the temperature can often exceed 30 degrees C, is discussed.


Subject(s)
Acari/physiology , Mites/parasitology , Plant Stems/parasitology , Predatory Behavior/physiology , Rutaceae/parasitology , Acari/growth & development , Acari/pathogenicity , Animals , Female , Models, Biological , Oviposition/physiology , Ovum/parasitology , Pest Control, Biological/methods , Population Density , Temperature
5.
Oecologia ; 106(2): 228-239, 1996 Apr.
Article in English | MEDLINE | ID: mdl-28307648

ABSTRACT

Lepthyphantes tenuis, a small sheet-webbuilding linyphiid spider is one of the most abundant spider species of cereal fields in Europe. In the present study we examined the process of web-site selection and web-site tenacity by adult females of this species in a winter wheat field. Spiders were selective in their choice of web-site. Different immigration rates into various manipulated web-sites, in field and laboratory, suggested that structural support and suitable micro-climate (high humidity) are the most important factors in the selection. Small holes dug in the ground were the most favoured web-sites. Web-site occupation was influenced by the presence of other conspecific spiders. Territorial contests occurred between spiders attempting to occupy the same web, these almost invariably led to the take-over of the web when the intruder was heavier. Interference, but also a certain level of tolerance, between spiders within the same web-site but in different webs was suggested by direct and indirect evidence. Many holes supported two or even three spiders in vertically stratified webs. Leaving probability of marked spiders was significantly higher in multiply occupied holes than in holes with a single web. Comparison with the results of a no-interference stochastic model showed that multiple occupancy in nature is less frequent than predicted by the model. There was further evidence for weak extra-web-interference between spiders in that multiple occupancy was even less frequent and overall occupancy was lower in web-sites which were packed close to each other. However, a level of tolerance for crowding is shown by the fact that closely packed hole colonies supported a spider density 13 times higher than in natural web-sites in the field. A marking experiment was carried out to gain information on web-site tenacity (i.e. the length of time a spider spends in a web-site) and abandonment. The average duration of tenacity was less than 2 days. A random loss function gave a good fit to the tenacity distribution and suggested that spiders abandoned web-sites randomly with a fixed leaving probability of c. 0.5. Individual webs were often used consecutively by more than one spider, and some spiders built more than one web in the same web-site. Calculations showed that abandonment is the most frequent leaving mode, while take-over by contest between spiders and disappearance due to destruction were some-what less frequent and equally likely modes of ending tenacity. It is suggested that the apparent contradiction between the selectiveness and competitiveness of spiders for web-sites and the relatively short tenacity observed can be resolved by hypothesising that spiders leave websites soon because they apply the strategy of spreading risk: spiders by frequently moving from one web-site to another distribute their reproductive efforts across several localities. This hypothesis is further supported by changes in web-site preference and ballooning behaviour at the onset of the reproductive stage in L. tenuis.

SELECTION OF CITATIONS
SEARCH DETAIL
...