Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 12(7): e9019, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35845388

ABSTRACT

Civilization is dependent upon plants for survival. Plants permeate our every moment and our relationship with them will dictate how we will manage the threats of climate change and ecological collapse defining the Anthropocene. Yet, despite the significance of plants and the critical role they have played in shaping ecosystems, civilizations, and human cultures, many people are now disconnected from the botanical world. Students are presented with little plant content, particularly identification, compared with animal content. Consequently, we are producing few plant scientists and educating fewer scientists about plants. This drives a self-accelerating cycle we term the extinction of botanical education. A process of knowledge erosion, that in this instance contributes to our separation from the natural world, makes us blind to the biodiversity crisis and inhibits our ability to restore it. We argue that neglecting the importance of plants within education threatens the foundations of industries and professions that rely on this knowledge. Furthermore, this extinction of botanical education creates an existential threat: Without the skills to fully comprehend the scale of and solutions to human-induced global change, how do we as a society combat it? We present key research agendas that will enable us to reverse the extinction of botanical education and highlight the critical role plants play on the global stage.

2.
PeerJ ; 9: e11783, 2021.
Article in English | MEDLINE | ID: mdl-34447618

ABSTRACT

Reynoutria japonica (Japanese knotweed) is a problematic invasive plant found in many areas of Europe and North America. Notably, in the UK, the species can cause issues with mortgage acquisition. Control of R. japonica is complicated by its ability to regenerate from small fragments of plant material; however, there remains uncertainty about how much (in terms of mass) rhizome is required for successful regeneration. This study investigated the ability of crowns and rhizomes with different numbers of nodes to regenerate successfully from three sites in the north of England, UK. Two of the sites had been subject to herbicide treatment for two years prior to sampling and the third site had no history of herbicide treatment. No significant differences were observed in regenerated stem diameter, maximum height of stem and maximum growth increments among crowns. All traits measured from the planted crowns were significantly greater than those of the planted rhizome fragments and at least one node was necessary for successful regeneration of rhizomes. The smallest initial fragment weight to regenerate and survive the experiment was 0.5 g. Subjecting all plant material to desiccation for 38 days resulted in no regrowth (emergence or regeneration) after replanting. These findings suggest that desiccation could be a valuable management strategy for small to medium scale infestations common in urban settings.

3.
PeerJ ; 6: e5246, 2018.
Article in English | MEDLINE | ID: mdl-30065865

ABSTRACT

Fallopia japonica (Japanese knotweed) is a well-known invasive alien species in the UK and elsewhere in Europe and North America. The plant is known to have a negative impact on local biodiversity, flood risk and ecosystem services; but in the UK it is also considered to pose a significant risk to the structural integrity of buildings that are within seven m of the above ground portions of the plant. This has led to the presence of the plant on residential properties regularly being used to refuse mortgage applications. Despite the significant socioeconomic impacts of such automatic mortgage option restriction, little research has been conducted to investigate this issue. The 'seven-m rule' is derived from widely adopted government guidance in the UK. This study considered if there is evidence to support this phenomenon in the literature, reports the findings of a survey of invasive species control contractors and property surveyors to determine if field observations support these assertions, and reports a case study of 68 properties, located on three streets in northern England where F. japonica was recorded. Additionally, given the importance of proximity, the seven-m rule is also tested based on data collected during the excavation based removal of F. japonica from 81 sites. No support was found to suggest that F. japonica causes significant damage to built structures, even when it is growing in close proximity to them and certainly no more damage than other plant species that are not subject to such stringent lending policies. It was found that the seven-m rule is not a statistically robust tool for estimating likely rhizome extension. F. japonica rhizome rarely extends more than four m from above ground plants and is typically found within two m for small stands and 2.5 m for large stands. Based on these findings, the practice of automatically restricting mortgage options for home buyers when F. japonica is present, is not commensurate with the risk.

4.
Ecol Evol ; 4(9): 1648-58, 2014 May.
Article in English | MEDLINE | ID: mdl-24967082

ABSTRACT

Most research on the genetics of invasive plant species has focused on analyzing spatial differences among existing populations. Using a long-established Gunnera tinctoria population from Ireland, we evaluated the potential of using plants derived from seeds associated with different soil layers to track genetic variation through time. This species and site were chosen because (1) G. tinctoria produces a large and persistent seed bank; (2) it has been present in this locality, Sraheens, for ∼90 years; (3) the soil is largely undisturbed; and (4) the soil's age can be reliably determined radiometrically at different depths. Amplified fragment length polymorphic markers (AFLPs) were used to assess differences in the genetic structure of 75 individuals sampled from both the standing population and from four soil layers, which spanned 18 cm (estimated at ∼90 years based on (210)Pb and (137)Cs dating). While there are difficulties in interpreting such data, including accounting for the effects of selection, seed loss, and seed migration, a clear pattern of lower total allele counts, percentage polymorphic loci, and genetic diversity was observed in deeper soils. The greatest percentage increase in the measured genetic variables occurred prior to the shift from the lag to the exponential range expansion phases and may be of adaptive significance. These findings highlight that seed banks in areas with long-established invasive populations can contain valuable genetic information relating to invasion processes and as such, should not be overlooked.

5.
Glob Chang Biol ; 19(4): 1262-74, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23504901

ABSTRACT

The growing economic and ecological damage associated with biological invasions, which will likely be exacerbated by climate change, necessitates improved projections of invasive spread. Generally, potential changes in species distribution are investigated using climate envelope models; however, the reliability of such models has been questioned and they are not suitable for use at local scales. At this scale, mechanistic models are more appropriate. This paper discusses some key requirements for mechanistic models and utilises a newly developed model (PSS[gt]) that incorporates the influence of habitat type and related features (e.g., roads and rivers), as well as demographic processes and propagule dispersal dynamics, to model climate induced changes in the distribution of an invasive plant (Gunnera tinctoria) at a local scale. A new methodology is introduced, dynamic baseline benchmarking, which distinguishes climate-induced alterations in species distributions from other potential drivers of change. Using this approach, it was concluded that climate change, based on IPCC and C4i projections, has the potential to increase the spread-rate and intensity of G. tinctoria invasions. Increases in the number of individuals were primarily due to intensification of invasion in areas already invaded or in areas projected to be invaded in the dynamic baseline scenario. Temperature had the largest influence on changes in plant distributions. Water availability also had a large influence and introduced the most uncertainty in the projections. Additionally, due to the difficulties of parameterising models such as this, the process has been streamlined by utilising methods for estimating unknown variables and selecting only essential parameters.


Subject(s)
Climate Change , Introduced Species , Models, Theoretical , Plants/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...